Hi All
Here is a very simple little class for finding a shortest route on a network, following Dijkstra's Algorithm: -
#!/usr/bin/env python
-
#This is meant to solve a maze with Dijkstra's algorithm
-
from numpy import inf
-
from copy import copy
-
-
class Graph(object):
-
"""A graph object that has a set of singly connected,weighted,
-
directed edges and a set of ordered pairs. Can be changed into
-
a connection matrix. Vertices are [0,1,...,n], and edges are
-
[[1,2,3],[2,1,1],...] where the first means 1 connected to 2
-
with weight 3, and the second means 2 connected to 1 with
-
weight 1."""
-
-
def __init__(self,vertices,edges):
-
self.vertices=vertices
-
self.size=len(self.vertices)
-
self.edges=edges
-
self.makematrix()
-
-
def makematrix(self):
-
"creates connection matrix"
-
self.matrix=[]
-
for i in range(self.size):
-
self.matrix.append([])
-
for j in range(self.size):
-
self.matrix[i].append(inf)
-
for edge in self.edges:
-
self.matrix[edge[0]][edge[1]]=edge[2]
-
-
def dijkstra(self,startvertex,endvertex):
-
#set distances
-
self.distance=[]
-
self.route=[]
-
for i in range(self.size):
-
self.distance.append(inf)
-
self.route.append([])
-
self.distance[startvertex]=0
-
self.route[startvertex]=[startvertex,]
-
#set visited
-
self.visited=[]
-
self.current=startvertex
-
while self.current<>None:
-
self.checkunvisited()
-
if endvertex in self.visited: break
-
return self.distance[endvertex],self.route[endvertex]
-
-
def checkunvisited(self):
-
basedist=self.distance[self.current]
-
self.visited.append(self.current)
-
for vertex,dist in enumerate(self.matrix[self.current]):
-
if vertex in self.visited: continue #only check unvisited
-
#set the distance to the new distance
-
if basedist+dist<self.distance[vertex]:
-
self.distance[vertex]=basedist+dist
-
self.route[vertex]=copy(self.route[self.current])
-
self.route[vertex].append(vertex)
-
#set next current node as one with smallest distance from initial
-
self.current=None
-
mindist=inf
-
for vertex,dist in enumerate(self.distance):
-
if vertex in self.visited: continue
-
if dist<mindist:
-
mindist=dist
-
self.current=vertex
-
-
-
-
def main():
-
#This solves the maze in the wikipedia article on Dijkstra's algorithm
-
#Note that the vertices are numbered modulo 6, so 6 is called 0 here
-
V=range(6)
-
E=[[1,2,7],[1,3,9],[1,0,14],[2,1,7],[2,3,10],[2,4,15],[3,1,9],[3,2,10],
-
[3,4,11],[3,0,2],[4,2,15],[4,3,11],[4,5,6],[5,4,6],[5,0,9],[0,1,14],
-
[0,3,2],[0,5,9]]
-
m=Graph(V,E)
-
print "size of graph is", m.size
-
-
print "distance and best route is", m.dijkstra(1,5)
-
-
-
-
if __name__=="__main__": main()
-
The main here is just an example, implementing the network shown in the wikipedia article. To use it, you simply need to get your network arranged into a list of vertices (0,1,...,n-1), and your edges into a list of coordinates of the form [a,b,d], where the edge is from a to b with weight d. If you want undirected, you simply need to add [b,a,d]. If you want unweighted you need to just set d=1.
I've been planning the design of some mazes for the local science centre, which is why I've got this! Any improvements/comments are welcome.
1 13860
Hi
So here I've beefed up the Graph class a little bit.
- The main addition is the implementation of Kruskal's algorithm for finding minimum spanning trees. The neat part is that it uses Dijkstra's algorithm to determine whether two points are connected (at least I found it neat).
- Other improvements are the ability to add vertices and edges to a graph on the fly, and to input a graph by its matrix, rather than by its vertices and edges sets. - #!/usr/bin/env python
-
#This is meant to solve a maze with Dijkstra's algorithm
-
from numpy import inf
-
from copy import copy
-
from bisect import bisect_left
-
-
class Graph(object):
-
"""A graph object that has a set of singly connected,weighted,
-
directed edges and a set of ordered pairs. Can be changed into
-
a connection matrix. Vertices are [0,1,...,n], and edges are
-
[[1,2,3],[2,1,1],...] where the first means 1 connected to 2
-
with weight 3, and the second means 2 connected to 1 with
-
weight 1."""
-
-
def __init__(self,vertices=[],edges=[]):
-
self.vertices=vertices
-
self.order=len(self.vertices)
-
self.edges=edges
-
self.size=len(edges)
-
self.makematrix()
-
-
def addvertice(self,vertice):
-
self.vertices.append(vertice)
-
self.order=len(self.vertices)
-
self.makematrix()
-
-
def addvertices(self,vertices):
-
self.vertices+=vertices
-
self.order=len(self.vertices)
-
self.makematrix()
-
def addedge(self,edge):
-
self.edges.append(edge)
-
self.size=len(self.edges)
-
self.makematrix()
-
-
def addedges(self,edges):
-
self.edges+=edges
-
self.size=len(self.edges)
-
self.makematrix()
-
-
def orderedges(self):
-
E=[]
-
eo=[]
-
for e in self.edges:
-
n=bisect_left(eo,e[2])
-
eo.insert(n,e[2])
-
E.insert(n,e)
-
self.edges=E
-
def makematrix(self):
-
"creates connection matrix"
-
self.matrix=[]
-
for i in range(self.order):
-
self.matrix.append([])
-
for j in range(self.order):
-
self.matrix[i].append(inf)
-
for edge in self.edges:
-
self.matrix[edge[0]][edge[1]]=edge[2]
-
-
def dijkstra(self,startvertex,endvertex):
-
#set distances
-
self.distance=[]
-
self.route=[]
-
for i in range(self.order):
-
self.distance.append(inf)
-
self.route.append([])
-
self.distance[startvertex]=0
-
self.route[startvertex]=[startvertex,]
-
#set visited
-
self.visited=[]
-
self.current=startvertex
-
while self.current<>None:
-
self.checkunvisited()
-
if endvertex in self.visited: break
-
return self.distance[endvertex],self.route[endvertex]
-
-
def checkunvisited(self):
-
basedist=self.distance[self.current]
-
self.visited.append(self.current)
-
for vertex,dist in enumerate(self.matrix[self.current]):
-
if vertex in self.visited: continue #only check unvisited
-
#set the distance to the new distance
-
if basedist+dist<self.distance[vertex]:
-
self.distance[vertex]=basedist+dist
-
self.route[vertex]=copy(self.route[self.current])
-
self.route[vertex].append(vertex)
-
#set next current node as one with smallest distance from initial
-
self.current=None
-
mindist=inf
-
for vertex,dist in enumerate(self.distance):
-
if vertex in self.visited: continue
-
if dist<mindist:
-
mindist=dist
-
self.current=vertex
-
-
-
def kruskal(self):
-
self.orderedges()
-
E=self.edges
-
T=Graph(self.vertices,[])
-
for e in E:
-
if T.dijkstra(e[0],e[1])[0]==inf:
-
T.addedge(e)
-
T.addedge([e[1],e[0],e[2]])
-
if T.order-1==T.size/2:break
-
return T
-
def weight(self):
-
return sum([e[2] for e in self.edges])
-
def setmatrix(self,matrix):
-
E=[]
-
V=range(len(matrix))
-
for i,row in enumerate(matrix):
-
for j,col in enumerate(row):
-
if col<inf:
-
E.append([i,j,col])
-
self.__init__(V,E)
-
-
def main():
-
#This solves the maze in the wikipedia article on Dijkstra's algorithm
-
#Note that the vertices are numbered modulo 6, so 6 is called 0 here
-
V=range(6)
-
E=[[1,2,7],[1,3,9],[1,0,14],[2,1,7],[2,3,10],[2,4,15],[3,1,9],[3,2,10],
-
[3,4,11],[3,0,2],[4,2,15],[4,3,11],[5,4,6],[5,0,9],[0,1,14],
-
[0,3,2],[0,5,9],[4,5,6]]
-
m=Graph(V,E)
-
print "order of graph is", m.order
-
print "distance and best route is", m.dijkstra(1,5)
-
print "edges", m.edges
-
m.orderedges()
-
print "ordered edges", m.edges
-
T=m.kruskal()
-
print "Minimum spanning tree:"
-
print "Vertices",T.vertices
-
print "Edges",T.edges
-
print "Matrix:"
-
print T.matrix
-
print "Weight",T.weight()/2
-
M=m.matrix
-
m2=Graph()
-
m2.setmatrix(M)
-
-
M=[[inf,16,12,21,inf,inf,inf],
-
[16,inf,inf,17,20,inf,inf],
-
[12,inf,inf,28,inf,31,inf],
-
[21,17,28,inf,18,19,23],
-
[inf,20,inf,18,inf,inf,11],
-
[inf,inf,31,19,inf,inf,27],
-
[inf,inf,inf,23,11,27,inf]]
-
G=Graph()
-
G.setmatrix(M)
-
T=G.kruskal()
-
print "Savings is",G.weight()/2-T.weight()/2
-
-
if __name__=="__main__": main()
-
Post your reply Sign in to post your reply or Sign up for a free account.
Similar topics
6 posts
views
Thread by ThanhVu Nguyen |
last post: by
|
3 posts
views
Thread by A_StClaire_ |
last post: by
|
3 posts
views
Thread by Ook |
last post: by
|
1 post
views
Thread by arlef |
last post: by
| |
2 posts
views
Thread by Gurpreet Singh |
last post: by
| | | | | | | | | | | | | |