Out of curiosity and to learn a little bit about the numpy package i've

tryed to implement

a vectorised version of the 'Sieve of Zakiya'.

While the code itself works fine it is astounding for me that the numpy

Version is almost 7 times slower than

the pure python version. I tryed to find out if i am doing something wrong

but wasn't able to find any answer.

Some experimentation showed that indexing into an numpy array is the

bottleneck that slows down my code.

However i don't understand why.

So i am looking for any explaination why the numpy version is that slow

(i expected it to be at least as fast as the pure python version).

Thank you in advance

>pythonw -u "PrimeSieve.py"5 Erat: 0.000000 ZakijaP5: 0.000000 VZakijaP5: 0.000000

1000005 Erat: 0.219000 ZakijaP5: 0.219000 VZakijaP5: 1.578000

2000005 Erat: 0.468000 ZakijaP5: 0.469000 VZakijaP5: 3.297000

3000005 Erat: 0.719000 ZakijaP5: 0.703000 VZakijaP5: 5.000000

4000005 Erat: 0.937000 ZakijaP5: 0.985000 VZakijaP5: 6.734000

5000005 Erat: 1.219000 ZakijaP5: 1.218000 VZakijaP5: 8.172000

6000005 Erat: 1.500000 ZakijaP5: 1.531000 VZakijaP5: 9.829000

7000005 Erat: 1.781000 ZakijaP5: 1.813000 VZakijaP5: 11.500000

8000005 Erat: 2.047000 ZakijaP5: 2.094000 VZakijaP5: 13.187000

9000005 Erat: 2.312000 ZakijaP5: 2.391000 VZakijaP5: 14.891000

10000005 Erat: 2.578000 ZakijaP5: 2.672000 VZakijaP5: 16.641000

11000005 Erat: 2.891000 ZakijaP5: 2.953000 VZakijaP5: 18.203000

12000005 Erat: 3.110000 ZakijaP5: 3.297000 VZakijaP5: 19.937000

#------------------------------

Prime_Sieves.py--------------------------------------

from math import sqrt

def sieveOfErat(end):

if end < 2: return []

lng = (end-1)>>1

sieve = [True]*(lng+1)

for i in xrange(int(sqrt(end)) >1):

if not sieve[i]: continue

for j in xrange( (i*(i + 3) << 1) + 3, lng, (i << 1) + 3):

sieve[j] = False

primes = [2]

primes.extend([(i << 1) + 3 for i in xrange(lng) if sieve[i]])

return primes

def SoZP5(val):

if val < 3 : return [2]

if val < 5 : return [2,3]

lndx = (val-1)/2

sieve = [0]*(lndx+15)

sieve[0:14] = 0 , 1 , 2, 0, 4, 5, 0, 7, 8, 0, 10, 0, 0, 13

for _i in xrange(14, lndx , 15):

sieve[_i:_i+15] = _i -1, 0, 0, _i + 2 , 0, _i + 4, _i + 5, 0, _i +7,

_i + 8, 0, _i + 10, 0, 0, _i + 13

for i in xrange(2, (int(sqrt(val))-3/2)+1):

if not sieve[i]: continue

k = 30*i+45

p1 = 7*i+9 # 7 (2i+3)

p2 = 11*i+15 # 11 (2i+3)

p3 = 13*i+18 # 13 (2i+3)

p4 = 17*i+24 # 17 (2i+3)

p5 = 19*i+27 # 19 (2i+3)

p6 = 23*i+33 # 23 (2i+3)

p7 = 29*i+42 # 29 (2i+3)

p8 = 31*i+45 # 31 (2i+3)

for _i in xrange(0, lndx, k):

try:

sieve[_i+p1] = 0

sieve[_i+p2] = 0

sieve[_i+p3] = 0

sieve[_i+p4] = 0

sieve[_i+p5] = 0

sieve[_i+p6] = 0

sieve[_i+p7] = 0

sieve[_i+p8] = 0

except (IndexError, ):

break

primes = [(i*2)+3 for i in xrange(2, lndx) if sieve[i]]

primes[0:0] = [2,3,5]

return primes

from numpy import array, zeros

def VSoZP5(val):

""" Vectorised Version of Sieve of Zakia"""

if val < 3 : return [2]

if val < 5 : return [2,3]

lndx = (val-1)/2

sieve = zeros(lndx+15,dtype="int32") #<-- Offending line: Indexing a

numpy array is slow

sieve[0:14] = 0 , 1 , 2, 0, 4, 5, 0, 7, 8, 0, 10, 0, 0, 13

for _i in xrange(14, lndx , 15):

sieve[_i:_i+15] = _i -1, 0, 0, _i + 2 , 0, _i + 4, _i + 5, 0, _i +7,

_i + 8, 0, _i + 10, 0, 0, _i + 13

om = array([9, 15, 18, 24, 27, 33, 42, 45], dtype="int32")

bm = array([7, 11, 13, 17, 19, 23, 29, 31], dtype="int32")

for i in xrange(2, (int(sqrt(val))-3/2)+1):

if not sieve[i]: continue

k = 30*i+45

rm = (bm * i) + om

for _i in xrange(0, lndx/k + 1):

try:

sieve[rm] = 0 #<-- Offending line: Indexing a numpy array

is slow

rm += k

except (IndexError,):

break

#

primes = [(i*2)+3 for i in xrange(2, lndx) if sieve[i]]

primes[0:0] = [2,3,5]

return primes

if __name__ == '__main__':

import time

for j in range(5, 20000007, 1000000):

print j,

a = time.time()

soe = sieveOfErat(j)

print "Erat: %2f" % (time.time() -a,),

a = time.time()

soz5 = SoZP5(j)

print "ZakijaP5: %2f" % (time.time() -a),

a = time.time()

sovz5 = VSoZP5(j)

print "VZakijaP5: %2f" % (time.time() -a)

assert soe == soz5 == sovz5

#------------------------------

Prime_Sieves.py--------------------------------------