Gigs_ wrote:

Can someone explain me bitwise expression?

few examples for every expression will be nice

x << y Left shift

x >y Right shift

x & y Bitwise AND

x | y Bitwise OR

x ^ y Bitwise XOR (exclusive OR)

~x Bitwise negation

thanks people

Here's some examples:

## What is BINARY?

##

## n base 2

## -- --------

## 0 00000000

## 1 00000001

## 2 00000010

## 3 00000011

## 4 00000100

## 5 00000101

## 6 00000110

## 7 00000111

## 8 00001000

## 9 00001001

## 10 00001010

## 11 00001011

## 12 00001100

## 13 00001101

## 14 00001110

## 15 00001111

##

##

## What does << do?

##

## 00000111

## << 00000100

## ------------

## 01110000

##

## What does >do?

##

## 00100100

## >00000010

## ------------

## 00001001

##

## What does & do?

##

## 00011011

## & 00001001

## ------------

## 00001001

##

## 00011011

## & 00001110

## ------------

## 00001010

##

## What does | do?

##

## 00010001

## | 00001010

## ------------

## 00011011

##

## 00011011

## | 00010001

## ------------

## 00011011

##

## What does ^ do?

##

## 00011011

## ^ 00011111

## ------------

## 00000100

##

## 00011111

## ^ 00001110

## ------------

## 00010001

##

## Bitwise demo: the Collatz Conjecture

##

## 41 31 47 71 107 161 121 91 137 103 155 233

## 175 263 395 593 445 167 251 377 283 425 319

## 479 719 1079 1619 2429 911 1367 2051 3077

## 577 433 325 61 23 35 53 5 1

bitwise.py

import gmpy # has lots of neat bitwise operations

# not found in standard Python

def convert_to_bina ry(n,bits):

s = gmpy.digits(n,2 ) # base 2 conversion

s = '0'*(bits-len(s)) + s # add leading 0's

return s

def report(n,m,o,p) :

print ' %s' % (n)

print '%3s %s' % (o,m)

print '------------'

print ' %s' % (p)

print

def Collatz(n):

# if n is even, divide by 2

# if n is odd, multiply by 3 and add 1

# Collat Conjecture: n always reaches 1

while n>1:

# find bit position of LS 1 bit

f = gmpy.scan1(n)

if f == 0: # then n is odd

n = n*3 + 1

else: # n is even

# remove all factors of 2 in one fell swoop

n = n >f

print n,

print

print 'What is BINARY?'

print """

n base 2

-- --------"""

for n in xrange(16):

print '%2d %s' % (n,convert_to_b inary(n,8))

print

print

print 'What does << do?'

print

report(convert_ to_binary(7,8), \

convert_to_bina ry(4,8), \

'<<', \

convert_to_bina ry(7<<4,8))

print 'What does >do?'

print

report(convert_ to_binary(36,8) , \

convert_to_bina ry(2,8), \

'>>', \

convert_to_bina ry(36>>2,8))

print 'What does & do?'

print

report(convert_ to_binary(27,8) , \

convert_to_bina ry(9,8), \

'&', \

convert_to_bina ry(27&9,8))

report(convert_ to_binary(27,8) , \

convert_to_bina ry(14,8), \

'&', \

convert_to_bina ry(27&14,8))

print 'What does | do?'

print

report(convert_ to_binary(17,8) , \

convert_to_bina ry(10,8), \

'|', \

convert_to_bina ry(17|10,8))

report(convert_ to_binary(27,8) , \

convert_to_bina ry(17,8), \

'|', \

convert_to_bina ry(27|17,8))

print 'What does ^ do?'

print

report(convert_ to_binary(27,8) , \

convert_to_bina ry(31,8), \

'^', \

convert_to_bina ry(27^31,8))

report(convert_ to_binary(31,8) , \

convert_to_bina ry(14,8), \

'^', \

convert_to_bina ry(31^14,8))

print 'Bitwise demo: the Collatz Conjecture'

print

Collatz(27)