By using this site, you agree to our updated Privacy Policy and our Terms of Use. Manage your Cookies Settings.
424,652 Members | 1,466 Online
Bytes IT Community
+ Ask a Question
Need help? Post your question and get tips & solutions from a community of 424,652 IT Pros & Developers. It's quick & easy.

cosine function returning long double (high resolution)

P: n/a
Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)

Mar 5 '08 #1
Share this Question
Share on Google+
10 Replies


P: n/a
ra*******@gmail.com wrote:
Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)
If you use the lcc-win compiler you get

cos(1e-7)=
0.999999999999995000000000000004166666666666665277 77777777777802579365079365076609347442680776222876 9173214
using the extra precision floating point (qfloat).
In standard C the biggest floating point type is long double.

No way to do that in standard C.

--
jacob navia
jacob at jacob point remcomp point fr
logiciels/informatique
http://www.cs.virginia.edu/~lcc-win32
Mar 5 '08 #2

P: n/a
jacob navia wrote:
ra*******@gmail.com wrote:
>Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)

If you use the lcc-win compiler you get

cos(1e-7)=
0.999999999999995000000000000004166666666666665277 77777777777802579365079365076609347442680776222876 9173214

using the extra precision floating point (qfloat).
In standard C the biggest floating point type is long double.

No way to do that in standard C.
P.S.

WAIT

This is .00000000000000499999999999999, a number that is bigger than
DBL_EPSILON.

MAYBE your problem is a printing problem?

Which format did you use to print it?

--
jacob navia
jacob at jacob point remcomp point fr
logiciels/informatique
http://www.cs.virginia.edu/~lcc-win32
Mar 5 '08 #3

P: n/a
ra*******@gmail.com wrote:
Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)
This program:
#include <math.h>
#include <stdio.h>
int main(void)
{
printf("%40.17Lf\n",cosl(1e-7));
}

prints
0.99999999999999500
--
jacob navia
jacob at jacob point remcomp point fr
logiciels/informatique
http://www.cs.virginia.edu/~lcc-win32
Mar 5 '08 #4

P: n/a
In article <00**********************************@q78g2000hsh. googlegroups.com>,
<ra*******@gmail.comwrote:
>Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)
cos(1e-7) is roughly 1 - 1e-14 / 2, which is closer to 1 than to
0.999999. It should be distinguishable from 1 as an IEEE double,
but not as a float.

-- Richard

--
:wq
Mar 5 '08 #5

P: n/a
Richard Tobin wrote:
>
cos(1e-7) is roughly 1 - 1e-14 / 2, which is closer to 1 than to
0.999999. It should be distinguishable from 1 as an IEEE double,
but not as a float.
And surely as a long double. I think the OP has a
printing precision problem, i.e. has written
printf("%g\n",cos(1e-7));

--
jacob navia
jacob at jacob point remcomp point fr
logiciels/informatique
http://www.cs.virginia.edu/~lcc-win32
Mar 5 '08 #6

P: n/a
jacob navia <ja***@nospam.comwrites:
jacob navia wrote:
>ra*******@gmail.com wrote:
>>Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)

If you use the lcc-win compiler you get

cos(1e-7)=
0.99999999999999500000000000000416666666666666527 77777777777780257936507936507660934744268077622287 69173214

using the extra precision floating point (qfloat).
In standard C the biggest floating point type is long double.

No way to do that in standard C.

P.S.

WAIT

This is .00000000000000499999999999999, a number that is bigger than
DBL_EPSILON.

MAYBE your problem is a printing problem?

Which format did you use to print it?
That's rather what I was thinking.

$ cat foo.c
#include <stdio.h>

int main(void)
{
double foo = 0.999999999;
printf("foo = %f\n", foo);
printf("foo = %.9f\n", foo);
return 0;
}
$ make foo
cc foo.c -o foo
$ ./foo
foo = 1.000000
foo = 0.999999999

--
Micah J. Cowan
Programmer, musician, typesetting enthusiast, gamer...
http://micah.cowan.name/
Mar 5 '08 #7

P: n/a
jacob navia <ja***@nospam.comwrites:
Richard Tobin wrote:
>>
cos(1e-7) is roughly 1 - 1e-14 / 2, which is closer to 1 than to
0.999999. It should be distinguishable from 1 as an IEEE double,
but not as a float.

And surely as a long double. I think the OP has a
printing precision problem, i.e. has written
printf("%g\n",cos(1e-7));
Note that the C standard only requires accuracy up to 10 decimal
digits (including for long double). That's why Richard took care to
qualify his statement as "IEEE double".

--
Micah J. Cowan
Programmer, musician, typesetting enthusiast, gamer...
http://micah.cowan.name/
Mar 5 '08 #8

P: n/a
ra*******@gmail.com wrote:
Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)
That is a grossly inaccurate value. Higher precision is not high accuracy:

#include <stdio.h>
#include <math.h>
#include <float.h>

int main(void)
{
int i;
double x = 1.0e-7, y = cos(x);
printf("With default precisions, cos(%g) is shown as:\n"
" (%%f) %f, (%%g) %g, (%%e) %e\n\n", x, y, y, y);
printf("With various precision up to DBL_DIG (%d), cos(%g) is\n",
DBL_DIG, x);
for (i = 0; i <= DBL_DIG; i++)
printf(" precision = %d, %.*f, %.*g, %.*e\n",
i, i, y, i, y, i, y);

x = acos(0.999999);
y = cos(x);
printf("\nWith default precisions, cos(%g) is shown as:\n"
" (%%f) %f, (%%g) %g, (%%e) %e\n\n", x, y, y, y);
printf("With various precision up to DBL_DIG (%d), cos(%g) is\n",
DBL_DIG, x);
for (i = 0; i <= DBL_DIG; i++)
printf(" precision = %d, %.*f, %.*g, %.*e\n",
i, i, y, i, y, i, y);
return 0;
}
With default precisions, cos(1e-07) is shown as:
(%f) 1.000000, (%g) 1, (%e) 1.000000e+00

With various precision up to DBL_DIG (15), cos(1e-07) is
precision = 0, 1, 1, 1e+00
precision = 1, 1.0, 1, 1.0e+00
precision = 2, 1.00, 1, 1.00e+00
precision = 3, 1.000, 1, 1.000e+00
precision = 4, 1.0000, 1, 1.0000e+00
precision = 5, 1.00000, 1, 1.00000e+00
precision = 6, 1.000000, 1, 1.000000e+00
precision = 7, 1.0000000, 1, 1.0000000e+00
precision = 8, 1.00000000, 1, 1.00000000e+00
precision = 9, 1.000000000, 1, 1.000000000e+00
precision = 10, 1.0000000000, 1, 1.0000000000e+00
precision = 11, 1.00000000000, 1, 1.00000000000e+00
precision = 12, 1.000000000000, 1, 1.000000000000e+00
precision = 13, 1.0000000000000, 1, 1.0000000000000e+00
precision = 14, 1.00000000000000, 1, 9.99999999999995e-01
precision = 15, 0.999999999999995, 0.999999999999995,
9.999999999999950e-01

With default precisions, cos(0.00141421) is shown as:
(%f) 0.999999, (%g) 0.999999, (%e) 9.999990e-01

With various precision up to DBL_DIG (15), cos(0.00141421) is
precision = 0, 1, 1, 1e+00
precision = 1, 1.0, 1, 1.0e+00
precision = 2, 1.00, 1, 1.00e+00
precision = 3, 1.000, 1, 1.000e+00
precision = 4, 1.0000, 1, 1.0000e+00
precision = 5, 1.00000, 1, 9.99999e-01
precision = 6, 0.999999, 0.999999, 9.999990e-01
precision = 7, 0.9999990, 0.999999, 9.9999900e-01
precision = 8, 0.99999900, 0.999999, 9.99999000e-01
precision = 9, 0.999999000, 0.999999, 9.999990000e-01
precision = 10, 0.9999990000, 0.999999, 9.9999900000e-01
precision = 11, 0.99999900000, 0.999999, 9.99999000000e-01
precision = 12, 0.999999000000, 0.999999, 9.999990000000e-01
precision = 13, 0.9999990000000, 0.999999, 9.9999900000000e-01
precision = 14, 0.99999900000000, 0.999999, 9.99999000000000e-01
precision = 15, 0.999999000000000, 0.999999, 9.999990000000000e-01
Mar 6 '08 #9

P: n/a
ra*******@gmail.com wrote:
>
Currently using cosine function in math.h

Currently I get:

1 = cos(1e^-7)

Is there another way for cos to return value of high accuracy say:

0.999999 = cos(1e^-7)

/* BEGIN new.c output */

LDBL_EPSILON is 2.220446e-016

fs_cosl(DEGREES_TO_RADIANS(-3540)) - 0.5 is 9.992007e-016

fs_cosl(1.0 / 10000000) - 1.0 is -4.996004e-015
fs_cosl(1.0 / 1000000) - 1.0 is -5.000445e-013
fs_cosl(1.0 / 100000) - 1.0 is -5.000000e-011
fs_cosl(1.0 / 10000) - 1.0 is -5.000000e-009
fs_cosl(1.0 / 100) - 1.0 is -4.999958e-005

/* END new.c output */

/* BEGIN new.c */

#include <stdio.h>
#include <math.h>
#include <float.h>

#include "fs_cosl.h"

#define DEGREES_TO_RADIANS(A) ((A) * atan(1) / 45)

int main(void)
{
puts("/* BEGIN new.c output */\n");
printf("LDBL_EPSILON is %Le\n\n",
LDBL_EPSILON);
printf("fs_cosl(DEGREES_TO_RADIANS(-3540)) - 0.5 is %Le\n\n",
fs_cosl(DEGREES_TO_RADIANS(-3540)) - 0.5);
printf("fs_cosl(1.0 / 10000000) - 1.0 is %Le\n",
fs_cosl(1.0 / 10000000) - 1.0);
printf("fs_cosl(1.0 / 1000000) - 1.0 is %Le\n",
fs_cosl(1.0 / 1000000) - 1.0);
printf("fs_cosl(1.0 / 100000) - 1.0 is %Le\n",
fs_cosl(1.0 / 100000) - 1.0);
printf("fs_cosl(1.0 / 10000) - 1.0 is %Le\n",
fs_cosl(1.0 / 10000) - 1.0);
printf("fs_cosl(1.0 / 100) - 1.0 is %Le\n\n",
fs_cosl(1.0 / 100) - 1.0);
puts("/* END new.c output */");
return 0;
}

/* END new.c */

/* BEGIN fs_cosl.h */
/*
** Portable freestanding code.
*/
#ifndef H_FS_COSL_H
#define H_FS_COSL_H

long double fs_cosl(long double x);
long double fs_sqrtl(long double x);
long double fs_fmodl(long double x, long double y);

#endif

/* END fs_cosl.h */

/* BEGIN fs_cosl.c */

#include <float.h>

#include "fs_cosl.h"
/*
** pi == (atan(1.0 / 3) + atan(1.0 / 2)) * 4
*/
static long double fs_pil(void);

long double fs_cosl(long double x)
{
long unsigned n;
int negative, sine;
long double a, b, c;
static long double pi, two_pi, half_pi, third_pi;
static int initialized;

if (0 x) {
x = -x;
}
if (LDBL_MAX >= x) {
if (!initialized) {
initialized = 1;
pi = fs_pil();
two_pi = 2 * pi;
half_pi = pi / 2;
third_pi = pi / 3;
}
if (x two_pi) {
x = fs_fmodl(x, two_pi);
}
if (x pi) {
x = two_pi - x;
}
if (x half_pi) {
x = pi - x;
negative = 1;
} else {
negative = 0;
}
if (x third_pi) {
x = half_pi - x;
sine = 1;
} else {
sine = 0;
}
c = x * x;
x = n = 0;
a = 1;
do {
b = a;
a *= c;
a /= ++n;
a /= ++n;
b -= a;
a *= c;
a /= ++n;
a /= ++n;
x += b;
} while (b LDBL_EPSILON / 2);
if (sine) {
x = fs_sqrtl((1 - x) * (1 + x));
}
if (negative) {
x = -x;
}
} else {
x = -LDBL_MAX;
}
return x;
}

long double fs_sqrtl(long double x)
{
long int n;
long double a, b;

if (x 0 && LDBL_MAX >= x) {
for (n = 0; x 2; x /= 4) {
++n;
}
while (0.5 x) {
--n;
x *= 4;
}
a = x;
b = (1 + x) / 2;
do {
x = b;
b = (a / x + x) / 2;
} while (x b);
while (n 0) {
x *= 2;
--n;
}
while (0 n) {
x /= 2;
++n;
}
} else {
if (x != 0) {
x = LDBL_MAX;
}
}
return x;
}

long double fs_fmodl(long double x, long double y)
{
long double a, b;
const long double c = x;

if (0 c) {
x = -x;
}
if (0 y) {
y = -y;
}
if (y != 0 && LDBL_MAX >= y && LDBL_MAX >= x) {
while (x >= y) {
a = x / 2;
b = y;
while (a >= b) {
b *= 2;
}
x -= b;
}
} else {
x = 0;
}
return 0 c ? -x : x;
}

static long double fs_pil(void)
{
long unsigned n;
long double a, b;
static long double p;
static int initialized;

if (!initialized) {
initialized = 1;
n = 1;
a = 3;
do {
a /= 9;
b = a / n;
n += 2;
a /= 9;
b -= a / n;
n += 2;
p += b;
} while (b LDBL_EPSILON / 4);
n = 1;
a = 2;
do {
a /= 4;
b = a / n;
n += 2;
a /= 4;
b -= a / n;
n += 2;
p += b;
} while (b LDBL_EPSILON / 2);
p *= 4;
}
return p;
}

/* END fs_cosl.c */

--
pete
Mar 6 '08 #10

P: n/a
THANKS GUYS!! VERY HELPFUL STUFF!
Mar 6 '08 #11

This discussion thread is closed

Replies have been disabled for this discussion.