473,408 Members | 2,477 Online
Bytes | Software Development & Data Engineering Community
Post Job

Home Posts Topics Members FAQ

Join Bytes to post your question to a community of 473,408 software developers and data experts.

which is better?


(A)

template <typename T>
metainline foo<T> lerp(const foo<T>& a, const foo<T>& b, const T& time)
{
foo<T> v;
repeat< 4,exec_mul<T> >::exec(v,a,b,time);
return v;
}

(B)

template <typename T>
inline foo<T> lerp(const foo<T>& a, const foo<T>& b, const T& time)
{
return foo<T>(
a[0] + (b[0] - a[0]) * time,
a[1] + (b[1] - a[1]) * time,
a[2] + (b[2] - a[2]) * time,
a[3] + (b[3] - a[3]) * time);
}

Which of the above: (A) or (B) is "better" from the viewpoint of the
language police? I am mainly interested in efficiency (assuming correctness
is met in both cases). I'm unrolling repeatitive tasks in (A), but I would
like to know if this is the famous NRVO I keep hearing about ; the return
value is named.. but is (B) theoretically more efficient, excluding possible
overhead from repeat<> template?

Here's the repeat and exec_mul in case they are relevant:

template <typename SCALAR>
struct exec_lerp
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c,
const SCALAR& d)
{
a[index] = b[index] + (c[index] - b[index]) * d;
}
};

template <int SIZE, typename E>
struct repeat
{
enum { INDEX = SIZE - 1 };

template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
repeat<INDEX,E>::exec(a,b,c);
E::exec(INDEX,a,b,c);
}

template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
repeat<INDEX,E>::exec(a,b);
E::exec(INDEX,a,b);
}

template <typename A>
static metainline void exec(A& a)
{
repeat<INDEX,E>::exec(a);
E::exec(INDEX,a);
}
};

In otherwords, is this case of Named Return Value Optimization? While I am
aware that C++ doesn't recognize such concept, but contemporary compilers do
and this isn't std.c++ but rather generic C++ group I thought to ask here to
learn more: I'm interested in performance (and correctness). The "foo" type
has const and non-const [] operator, through which it accesses the
components, the internal presentation is static array, in most cases like
this:

template <typename SCALAR, int SIZE>
class foo
{
protected:
SCALAR m_v[SIZE];
// ...
};

Ie. is it generally (with current compilers!) prefered to return-by-value
constructing the return value object in return statement, or give it a name
and return?

I posted on same topic few years back on my opinions on my current vector
library, where I named the members:

SCALAR x,y,z,w; // example

These are possible to initialize in constructor using initializers, array
isn't.. but array was recommended back then so I decided to give it a shot
in the current design, so from this point of view it doesn't make any
difference if I try to initialize the object in constructor or just unroll
and initialize components with a template.

Any thoughts? Criticism? Helpful suggestions?
--
"I seen things you couldn't imagine.." - B.B. Warner
"I seen you do the them and it wasn't pretty.." - Anonymous
Jul 19 '05 #1
3 2894
On Sat, 27 Sep 2003 01:53:38 +0300, "wogston" <sp**@nothere.net> wrote:

(A)

template <typename T>
metainline foo<T> lerp(const foo<T>& a, const foo<T>& b, const T& time)
C++ has no keyword 'metainline', and you don't define a 'metainline'
macro in the code presented here.

Right here you're already in off-topic non-C++ land.
{
foo<T> v;
repeat< 4,exec_mul<T> >::exec(v,a,b,time);
return v;
}

(B)

template <typename T>
inline foo<T> lerp(const foo<T>& a, const foo<T>& b, const T& time)
{
return foo<T>(
a[0] + (b[0] - a[0]) * time,
a[1] + (b[1] - a[1]) * time,
a[2] + (b[2] - a[2]) * time,
a[3] + (b[3] - a[3]) * time);
}

Which of the above: (A) or (B) is "better"
Asking for "better" is trolling.
from the viewpoint of the language police?
Using deragatory terms like "language police" is trolling.
I am mainly interested in efficiency (assuming correctness
is met in both cases). I'm unrolling repeatitive tasks in (A), but I would
like to know if this is the famous NRVO I keep hearing about ;
It is not.

the return value is named..
It is not.
but is (B) theoretically more efficient, excluding possible
overhead from repeat<> template?
That is a Quality Of Implementation issue (also known as trolling).

Assuming the compiler does not optimize, the version with a single
'return'-statement should generally be more efficient than the one
with additional statements.

There is no answer without such assumptions.
Here's the repeat and exec_mul in case they are relevant:

template <typename SCALAR>
struct exec_lerp
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c,
As mentioned, C++ has no keyword 'metainline'.
const SCALAR& d)
{
a[index] = b[index] + (c[index] - b[index]) * d;
}
};

template <int SIZE, typename E>
struct repeat
{
enum { INDEX = SIZE - 1 };

template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
repeat<INDEX,E>::exec(a,b,c);
E::exec(INDEX,a,b,c);
}

template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
repeat<INDEX,E>::exec(a,b);
E::exec(INDEX,a,b);
}

template <typename A>
static metainline void exec(A& a)
{
repeat<INDEX,E>::exec(a);
E::exec(INDEX,a);
}
};

In otherwords, is this case of Named Return Value Optimization?
No (NRVO is a language extension that you don't use here).

While I am
aware that C++ doesn't recognize such concept, but contemporary compilers do
and this isn't std.c++ but rather generic C++ group
That is incorrect.

Read Shiva's welcome-text.

Read the FAQ.
I thought to ask here to
learn more: I'm interested in performance (and correctness). The "foo" type
has const and non-const [] operator, through which it accesses the
components, the internal presentation is static array, in most cases like
this:

template <typename SCALAR, int SIZE>
class foo
{
protected:
SCALAR m_v[SIZE];
// ...
};
Why don't you use a std::vector<>?
Ie. is it generally (with current compilers!) prefered to return-by-value
constructing the return value object in return statement, or give it a name
and return?
Whatever gives clear, readable code.
I posted on same topic few years back on my opinions on my current vector
library, where I named the members:

SCALAR x,y,z,w; // example

These are possible to initialize in constructor using initializers, array
isn't.. but array was recommended back then so I decided to give it a shot
in the current design, so from this point of view it doesn't make any
difference if I try to initialize the object in constructor or just unroll
and initialize components with a template.

Any thoughts? Criticism? Helpful suggestions?


Try to describe what you're trying to achieve, not your technical solution.

Jul 19 '05 #2
> C++ has no keyword 'metainline', and you don't define a 'metainline'
macro in the code presented here.

Right here you're already in off-topic non-C++ land.


My bad, it was copy-paste from "real code", not typed specificly to here.
It's a macro for __forceinline or inline, depending on what compiler you
happen to be on. OK, so __forceinline is off-topic here, assume it reads
"inline" from this point forward.
Jul 19 '05 #3
> > C++ has no keyword 'metainline', and you don't define a 'metainline'
macro in the code presented here.


Here are the full definitions. hope this helps (somehow I doubt it, I tried
to trim it down to minimum previous time). If there are further headers you
would like to see before staying on-topic let me know. ;-)

// begin "configure.hpp"

#ifndef PRMATH_CONFIGURE_HPP
#define PRMATH_CONFIGURE_HPP
namespace prmath
{
// ------------------------------------------------------------
// Microsoft Visual C++
// ------------------------------------------------------------
#if defined(__VISUALC__)
#pragma inline_depth(255)
#pragma inline_recursion(on)
#pragma auto_inline(on)
#ifndef metainline
#define metainline __forceinline
#endif
#ifndef PRMATH_EXPRESSION_ENABLE
#define PRMATH_EXPRESSION_ENABLE
#endif
#endif
// ------------------------------------------------------------
// Intel C++
// ------------------------------------------------------------
#if defined(__INTEL_COMPILER)
#ifndef metainline
#define metainline __forceinline
#endif
#endif
// ------------------------------------------------------------
// generic c++ compiler
// ------------------------------------------------------------
#ifndef metainline
#define metainline inline
#endif
#ifdef PRMATH_EXPRESSION_DISABLE
#ifdef PRMATH_EXPRESSION_ENABLE
#undef PRMATH_EXPRESSION_ENABLE
#endif
#endif
#ifdef PRMATH_TYPENAME_DISABLE
#ifdef PRMATH_TYPENAME_ENABLE
#undef PRMATH_TYPENAME_ENABLE
#endif
#else
#ifndef PRMATH_TYPENAME_ENABLE
#define PRMATH_TYPENAME_ENABLE
#endif
#endif
} // namespace prmath
#endif
// begin "evaluate.hpp"

#ifndef PRMATH_EVALUATE_HPP
#define PRMATH_EVALUATE_HPP
#include <cassert>
#include "configure.hpp"
namespace prmath
{
// ------------------------------------------------------------
// permute masks
// ------------------------------------------------------------
enum
{
xxx = 0, yxx = 1, zxx = 2,
xyx = 4, yyx = 5, zyx = 6,
xzx = 8, yzx = 9, zzx = 10,
xxy = 16, yxy = 17, zxy = 18,
xyy = 20, yyy = 21, zyy = 22,
xzy = 24, yzy = 25, zzy = 26,
xxz = 32, yxz = 33, zxz = 34,
xyz = 36, yyz = 37, zyz = 38,
xzz = 40, yzz = 41, zzz = 42
};
enum
{
xxxx,yxxx,zxxx,wxxx,xyxx,yyxx,zyxx,wyxx,xzxx,yzxx, zzxx,wzxx,xwxx,ywxx,zwxx,w
wxx,
xxyx,yxyx,zxyx,wxyx,xyyx,yyyx,zyyx,wyyx,xzyx,yzyx, zzyx,wzyx,xwyx,ywyx,zwyx,w
wyx,
xxzx,yxzx,zxzx,wxzx,xyzx,yyzx,zyzx,wyzx,xzzx,yzzx, zzzx,wzzx,xwzx,ywzx,zwzx,w
wzx,
xxwx,yxwx,zxwx,wxwx,xywx,yywx,zywx,wywx,xzwx,yzwx, zzwx,wzwx,xwwx,ywwx,zwwx,w
wwx,
xxxy,yxxy,zxxy,wxxy,xyxy,yyxy,zyxy,wyxy,xzxy,yzxy, zzxy,wzxy,xwxy,ywxy,zwxy,w
wxy,
xxyy,yxyy,zxyy,wxyy,xyyy,yyyy,zyyy,wyyy,xzyy,yzyy, zzyy,wzyy,xwyy,ywyy,zwyy,w
wyy,
xxzy,yxzy,zxzy,wxzy,xyzy,yyzy,zyzy,wyzy,xzzy,yzzy, zzzy,wzzy,xwzy,ywzy,zwzy,w
wzy,
xxwy,yxwy,zxwy,wxwy,xywy,yywy,zywy,wywy,xzwy,yzwy, zzwy,wzwy,xwwy,ywwy,zwwy,w
wwy,
xxxz,yxxz,zxxz,wxxz,xyxz,yyxz,zyxz,wyxz,xzxz,yzxz, zzxz,wzxz,xwxz,ywxz,zwxz,w
wxz,
xxyz,yxyz,zxyz,wxyz,xyyz,yyyz,zyyz,wyyz,xzyz,yzyz, zzyz,wzyz,xwyz,ywyz,zwyz,w
wyz,
xxzz,yxzz,zxzz,wxzz,xyzz,yyzz,zyzz,wyzz,xzzz,yzzz, zzzz,wzzz,xwzz,ywzz,zwzz,w
wzz,
xxwz,yxwz,zxwz,wxwz,xywz,yywz,zywz,wywz,xzwz,yzwz, zzwz,wzwz,xwwz,ywwz,zwwz,w
wwz,
xxxw,yxxw,zxxw,wxxw,xyxw,yyxw,zyxw,wyxw,xzxw,yzxw, zzxw,wzxw,xwxw,ywxw,zwxw,w
wxw,
xxyw,yxyw,zxyw,wxyw,xyyw,yyyw,zyyw,wyyw,xzyw,yzyw, zzyw,wzyw,xwyw,ywyw,zwyw,w
wyw,
xxzw,yxzw,zxzw,wxzw,xyzw,yyzw,zyzw,wyzw,xzzw,yzzw, zzzw,wzzw,xwzw,ywzw,zwzw,w
wzw,
xxww,yxww,zxww,wxww,xyww,yyww,zyww,wyww,xzww,yzww, zzww,wzww,xwww,ywww,zwww,w
www
};
// ------------------------------------------------------------
// execs
// ------------------------------------------------------------
template <typename SCALAR>
struct exec_copy
{
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] = b[index];
}
template <typename A>
static metainline void exec(int index, A& a, const SCALAR& b)
{
a[index] = b;
}
};
template <typename SCALAR>
struct exec_min
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
a[index] = b[index] < c[index] ? b[index] : c[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] = a[index] < b[index] ? a[index] : b[index];
}
};
template <typename SCALAR>
struct exec_max
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
a[index] = b[index] > c[index] ? b[index] : c[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] = a[index] > b[index] ? a[index] : b[index];
}
};
template <typename SCALAR>
struct exec_neg
{
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] = -b[index];
}
template <typename A>
static metainline void exec(int index, A& a)
{
a[index] = -a[index];
}
};
template <typename SCALAR>
struct exec_add
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
a[index] = b[index] + c[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] += b[index];
}
};
template <typename SCALAR>
struct exec_sub
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
a[index] = b[index] - c[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] -= b[index];
}
};
template <typename SCALAR>
struct exec_mul
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
a[index] = b[index] * c[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b)
{
a[index] *= b[index];
}
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b, const SCALAR& c)
{
a[index] = b[index] * c;
}
template <typename A>
static metainline void exec(int index, A& a, const SCALAR& b)
{
a[index] *= b;
}
};
template <typename SCALAR, int SIZE>
struct exec_cross
{
template <typename A, typename B, typename C>
static metainline void exec(int, A&, const B&, const C&)
{
}
};
template <typename SCALAR>
struct exec_cross<SCALAR,3>
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c)
{
switch ( index )
{
case 0: a[0] = b[1] * c[2] - b[2] * c[1]; break;
case 1: a[1] = b[2] * c[0] - b[0] * c[2]; break;
case 2: a[2] = b[0] * c[1] - b[1] * c[0]; break;
}
}
};
template <typename SCALAR>
struct exec_lerp
{
template <typename A, typename B, typename C>
static metainline void exec(int index, A& a, const B& b, const C& c, const
SCALAR& d)
{
a[index] = b[index] + (c[index] - b[index]) * d;
}
};
template <typename SCALAR>
struct exec_permute
{
template <typename A, typename B>
static metainline void exec(int index, A& a, const B& b, const int& mask)
{
const int idx = (mask >> (index * 2)) & 0x03;
a[index] = b[idx];
}
};
// ------------------------------------------------------------
// repeat
// ------------------------------------------------------------
template <int SIZE, typename E>
struct repeat
{
enum { INDEX = SIZE - 1 };
template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
repeat<INDEX,E>::exec(a,b,c);
E::exec(INDEX,a,b,c);
}
template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
repeat<INDEX,E>::exec(a,b);
E::exec(INDEX,a,b);
}
template <typename A>
static metainline void exec(A& a)
{
repeat<INDEX,E>::exec(a);
E::exec(INDEX,a);
}
};
template <typename E>
struct repeat<3,E>
{
template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
E::exec(0,a,b,c);
E::exec(1,a,b,c);
E::exec(2,a,b,c);
}
template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
E::exec(0,a,b);
E::exec(1,a,b);
E::exec(2,a,b);
}
template <typename A>
static metainline void exec(A& a)
{
E::exec(0,a);
E::exec(1,a);
E::exec(2,a);
}
};
template <typename E>
struct repeat<2,E>
{
template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
E::exec(0,a,b,c);
E::exec(1,a,b,c);
}
template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
E::exec(0,a,b);
E::exec(1,a,b);
}
template <typename A>
static metainline void exec(A& a)
{
E::exec(0,a);
E::exec(1,a);
}
};
template <typename E>
struct repeat<1,E>
{
template <typename A, typename B, typename C>
static metainline void exec(A& a, const B& b, const C& c)
{
E::exec(0,a,b,c);
}
template <typename A, typename B>
static metainline void exec(A& a, const B& b)
{
E::exec(0,a,b);
}
template <typename A>
static metainline void exec(A& a)
{
E::exec(0,a);
}
};
// ------------------------------------------------------------
// product
// ------------------------------------------------------------
template <typename SCALAR, int SIZE>
struct product
{
enum { INDEX = SIZE - 1 };
template <typename A, typename B>
static metainline SCALAR exec(const A& a, const B& b)
{
return product<SCALAR,INDEX>::exec(a,b) + a[INDEX] * b[INDEX];
}
};
template <typename SCALAR>
struct product<SCALAR,4>
{
template <typename A, typename B>
static metainline SCALAR exec(const A& a, const B& b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
};
template <typename SCALAR>
struct product<SCALAR,3>
{
template <typename A, typename B>
static metainline SCALAR exec(const A& a, const B& b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
};
template <typename SCALAR>
struct product<SCALAR,2>
{
template <typename A, typename B>
static metainline SCALAR exec(const A& a, const B& b)
{
return a[0] * b[0] + a[1] * b[1];
}
};
template <typename SCALAR>
struct product<SCALAR,1>
{
template <typename A, typename B>
static metainline SCALAR exec(const A& a, const B& b)
{
return a[0] * b[0];
}
};
// ------------------------------------------------------------
// evaluators
// ------------------------------------------------------------
template <typename SCALAR>
struct eval_ref
{
template <typename A>
static metainline SCALAR evaluate(int index, const A& a, const int&)
{
return a[index];
}
};
template <typename SCALAR>
struct eval_neg
{
template <typename A>
static metainline SCALAR evaluate(int index, const A& a, const int&)
{
return -a[index];
}
};
template <typename SCALAR>
struct eval_add
{
template <typename A, typename B>
static metainline SCALAR evaluate(int index, const A& a, const B& b)
{
return a[index] + b[index];
}
};
template <typename SCALAR>
struct eval_sub
{
template <typename A, typename B>
static metainline SCALAR evaluate(int index, const A& a, const B& b)
{
return a[index] - b[index];
}
};
template <typename SCALAR>
struct eval_mul
{
template <typename A>
static metainline SCALAR evaluate(int index, const A& a, const SCALAR b)
{
return a[index] * b;
}
template <typename B>
static metainline SCALAR evaluate(int index, const SCALAR a, const B& b)
{
return a * b[index];
}
};
template <typename SCALAR>
struct eval_div
{
template <typename A>
static metainline SCALAR evaluate(int index, const A& a, const SCALAR b)
{
return a[index] / b;
}
};
template <typename SCALAR, int SIZE>
struct eval_cross
{
template <typename A, typename B>
static metainline SCALAR evaluate(int, const A&, const B&)
{
return 0;
}
};
template <typename SCALAR>
struct eval_cross<SCALAR,3>
{
template <typename A, typename B>
static metainline SCALAR evaluate(int index, const A& a, const B& b)
{
switch ( index )
{
case 0: return a[1] * b[2] - a[2] * b[1];
case 1: return a[2] * b[0] - a[0] * b[2];
case 2: return a[0] * b[1] - a[1] * b[0];
default: return 0;
}
}
};
template <typename SCALAR, int SIZE>
struct eval_permute
{
template <typename A>
static metainline SCALAR evaluate(int index, const A& a, const int& mask)
{
index = (mask >> (index * 2)) & 0x03;
assert( index < SIZE );
return a[index];
}
};
// ------------------------------------------------------------
// expression
// ------------------------------------------------------------
template <typename TYPE, typename SCALAR, int SIZE, typename EVALUATOR,
typename A, typename B>
class expr
{
private:
const A m_a;
const B m_b;
public:
metainline expr(const A& a, const B& b)
: m_a(a), m_b(b)
{
}
metainline SCALAR operator [] (int index) const
{
assert( index >= 0 && index < SIZE );
return EVALUATOR::evaluate(index,m_a,m_b);
}
metainline expr operator + () const
{
return *this;
}
metainline expr< TYPE,SCALAR,SIZE,eval_neg<SCALAR>,expr,int >
operator - () const
{
return expr< TYPE,SCALAR,SIZE,eval_neg<SCALAR>,expr,int >(*this,0);
}
};
} // namespace prmath
#endif
--
"What You See isn't What You Get, But What I Give..." -- N. B.
Jul 19 '05 #4

This thread has been closed and replies have been disabled. Please start a new discussion.

Similar topics

2
by: Amit D.Shinde | last post by:
Hello Experts.. I need some help regarding cookies and session objects and also global.asa file I am creating one cookie when a user logs in on my website. The cookie stores the login name of...
6
by: lastusernameleft | last post by:
i've been researching this issue for a while and can't come to any conclusive answer, mostly it seems to be a preference over syntax, some saying c# is elegant while vb is clunky, or that c# is...
1
by: Markus Rebbert | last post by:
Hi list, i got an postgresql installation on linux (debian) with the htree partitions: 1- system 2- postgresql data files 3- postgresql WAL logs(pg_xferlog) Our standard file system is...
4
by: Ed Davis | last post by:
I'm trying to decide which of the following programming styles is better, as in easier to understand, and thus easier to maintain. Keep in mind that for posting purposes, this is a greatly...
9
by: Robert Lario | last post by:
C# verses VB.Net Which Way to go. I am sure this issues has come up before. Please direct me to any good articles that cover this issue. Ideally some neutral assessment.
22
by: smartwolf agassi via DotNetMonster.com | last post by:
I'm a C# language learner. I want to know which IDE is better for C# programing, Borland C#Builder or VS.net 2003? -- Message posted via http://www.dotnetmonster.com
2
by: monkeydragon | last post by:
Which is better, using ReadFile/WriteFile or use fstream?
33
by: Protoman | last post by:
Which is better for general-purpose programming, C or C++? My friend says C++, but I'm not sure. Please enlighten me. Thanks!!!!!
48
by: meyer | last post by:
Hi everyone, which compiler will Python 2.5 on Windows (Intel) be built with? I notice that Python 2.4 apparently has been built with the VS2003 toolkit compiler, and I read a post from Scott...
20
by: mike3 | last post by:
Hi. (Xposted to both comp.lang.c++ and comp.programming since I've got questions related to both C++ language and general programming) I've got the following C++ code. The first routine runs in...
0
by: Charles Arthur | last post by:
How do i turn on java script on a villaon, callus and itel keypad mobile phone
0
by: emmanuelkatto | last post by:
Hi All, I am Emmanuel katto from Uganda. I want to ask what challenges you've faced while migrating a website to cloud. Please let me know. Thanks! Emmanuel
0
BarryA
by: BarryA | last post by:
What are the essential steps and strategies outlined in the Data Structures and Algorithms (DSA) roadmap for aspiring data scientists? How can individuals effectively utilize this roadmap to progress...
1
by: nemocccc | last post by:
hello, everyone, I want to develop a software for my android phone for daily needs, any suggestions?
1
by: Sonnysonu | last post by:
This is the data of csv file 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 3 the lengths should be different i have to store the data by column-wise with in the specific length. suppose the i have to...
0
marktang
by: marktang | last post by:
ONU (Optical Network Unit) is one of the key components for providing high-speed Internet services. Its primary function is to act as an endpoint device located at the user's premises. However,...
0
by: Hystou | last post by:
Most computers default to English, but sometimes we require a different language, especially when relocating. Forgot to request a specific language before your computer shipped? No problem! You can...
0
jinu1996
by: jinu1996 | last post by:
In today's digital age, having a compelling online presence is paramount for businesses aiming to thrive in a competitive landscape. At the heart of this digital strategy lies an intricately woven...
0
by: Hystou | last post by:
Overview: Windows 11 and 10 have less user interface control over operating system update behaviour than previous versions of Windows. In Windows 11 and 10, there is no way to turn off the Windows...

By using Bytes.com and it's services, you agree to our Privacy Policy and Terms of Use.

To disable or enable advertisements and analytics tracking please visit the manage ads & tracking page.