473,396 Members | 1,866 Online
Bytes | Software Development & Data Engineering Community
Post Job

Home Posts Topics Members FAQ

Join Bytes to post your question to a community of 473,396 software developers and data experts.

Returning an array?

I believe it is technically possible to return a pointer to the first
element of an array. I can persuade the returned pointer to act like an
array, with some qualifications. I'm specifically interested in
multidimensional arrays.

It is often said that arrays and pointers are virtually identical. My
observations are that my (gcc) compiler knows the difference between T*, T
a1[9], and a2[3][3].

What I'm currently trying to do is to return a pointer (or reference) to an
array which was passed in as a container for the results of matrix
calculations taking two other matrices as arguments. It's the same concept
as using ostream& print(&ostream out, const objType& obj){ out << obj.data;
return out; }. I don't absolutely /need/ the functionality, but it would
be more intuitive to work with in some instances.

AFAIK, there is no way to specify an array return type. Whereas I can
specify 'ostream&', I cannot specify 'T[][dimensions]' as a return type. I
can use 'T*' as the return type and cast the returned array to T*. But
then it's not the same type as was passed in. Not to mention that it is
rather tricky playing with arrays at that level.

There are various reasons I would rather not use the stl containers. I can
create my own containers. AAMOF, that's what I'm doing. I don't need nor
even want iterators. Is wrapping the array in some kind of class type
object the only viable approach to passing arrays around?
--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #1
19 1914
Steven T. Hatton wrote:
I believe it is technically possible to return a pointer to the first
element of an array.
Yes, it is possible.
I can persuade the returned pointer to act like an
array, with some qualifications. I'm specifically interested in
multidimensional arrays.

It is often said that arrays and pointers are virtually identical. My
observations are that my (gcc) compiler knows the difference between T*, T
a1[9], and a2[3][3].
They are not the same type, if that's what you're alluding to.

What I'm currently trying to do is to return a pointer (or reference) to an
array which was passed in as a container for the results of matrix
calculations taking two other matrices as arguments. It's the same concept
as using ostream& print(&ostream out, const objType& obj){ out << obj.data;
return out; }. I don't absolutely /need/ the functionality, but it would
be more intuitive to work with in some instances.
"Intuitive" is not really objective. But if it's intuitive to you,
by all means, do it.
AFAIK, there is no way to specify an array return type. Whereas I can
specify 'ostream&', I cannot specify 'T[][dimensions]' as a return type. I
can use 'T*' as the return type and cast the returned array to T*. But
then it's not the same type as was passed in. Not to mention that it is
rather tricky playing with arrays at that level.

There are various reasons I would rather not use the stl containers. I can
create my own containers. AAMOF, that's what I'm doing. I don't need nor
even want iterators. Is wrapping the array in some kind of class type
object the only viable approach to passing arrays around?


Yes, actually. That's a very common approach. Wrapping it in a struct
is the simplest thing, and has worked for generations of C programmers.

You could, of course, try to work with _references_ to arrays, but the
syntax is really convoluted, to say the least. Although, you coudl get
around it with some typedefs...

typedef double (&dMatrix3x3)[3][3];

dMatrix3x3 mul(dMatrix3x3 m, double d)
{
m[0][0] *= d; m[0][1] *= d; m[0][2] *= d;
m[1][0] *= d; m[1][1] *= d; m[1][2] *= d;
m[2][0] *= d; m[2][1] *= d; m[2][2] *= d;
return m;
}

int main()
{
double m[3][3] = { 1,2,3,4,5,6,7,8,9 };
mul(mul(m, 2), 5);

// m should now contain { 10,20,30 ...
}

V
Jul 22 '05 #2

int* Blah()
{
int monkey[12];

return monkey;
}
int main()
{
int* const &poo = Blah();

poo[2] = 3; //UB: The array no longer exists
}

-JKop
Jul 22 '05 #3
You could, of course, try to work with _references_ to arrays, but the
syntax is really convoluted, to say the least.

I disagree. It's simple operator and operand precedence:
int &k[5]; //an array of 5 references to integers

int (&k)[5]; //a reference to an array of 5 integers
-JKop
Jul 22 '05 #4

"JKop" <NU**@NULL.NULL> wrote in message
int &k[5]; //an array of 5 references to integers


Never knew that array of references are legal! Have you ever tried to
compile this code ?

Sharad
Jul 22 '05 #5

"JKop" <NU**@NULL.NULL> wrote in message
news:vx*******************@news.indigo.ie...
int (&k)[5]; //a reference to an array of 5 integers


This too is illegal. You need to initialize the reference, i.e. it has to be
bound to something for sure.

Sharad
Jul 22 '05 #6
Sharad Kala posted:

"JKop" <NU**@NULL.NULL> wrote in message
int &k[5]; //an array of 5 references to integers


Never knew that array of references are legal! Have you ever tried to
compile this code ?

Sharad

You're correct, there can't be an array of references.

But... my syntax above *would* define such if it were legal... (ie. I have
the correct operator precedence)
-JKop
Jul 22 '05 #7
Sharad Kala posted:

"JKop" <NU**@NULL.NULL> wrote in message
news:vx*******************@news.indigo.ie...
int (&k)[5]; //a reference to an array of 5 integers


This too is illegal. You need to initialize the reference, i.e. it has
to be bound to something for sure.

Sharad


int main()
{
int poo[5];

int (&blah)[5] = poo;
}
-JKop
Jul 22 '05 #8
Victor Bazarov wrote:
Steven T. Hatton wrote:
It is often said that arrays and pointers are virtually identical. My
observations are that my (gcc) compiler knows the difference between T*,
T a1[9], and a2[3][3].
They are not the same type, if that's what you're alluding to.


Yes, that's pretty much what I had intended. I should have waited until I
got some sleep before sending this. (I actually figured it out before I
went to bed. Nonetheless...). I had simply been passing the wrong things
to my functions.

float m[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

// this doesn't work:
void print(unsigned rowSize, float* mat[]){/*...*/}
error: cannot convert `float (*)[3]' to `float**' for argument `2'
to `void print(unsigned int, float**)'

// nor does this:
void print(unsigned rowSize, float** mat){/*...*/}
error: cannot convert `float (*)[3]' to `float**' for argument `2'
to `void print(unsigned int, float**)'

// Now, this lovely bit of hackerie *does* work

void print(unsigned rowSize, float* mat00)
{
float** mat = &mat00;

unsigned size = rowSize * rowSize;
// perhaps size_t would be more correct than unsigned?

cout << "\n---------- matrix mat** -----------\n";
for(unsigned i = 0; i < size; i++)
{
if(i%rowSize == 0 && i != 0){cout<<"\n";}
cout << setw(4) << *(*(mat + i/size ) + i%size) <<" ";
}
cout << "\n";
}

float m[3][3] = {{1,2,3},{4,5,6},{7,8,9}};
print(3, &m[0][0]);
"Intuitive" is not really objective. But if it's intuitive to you,
by all means, do it.


I believe there are other advantages as well. I have not experimented with
it, but I should be able to chain operations together in a single
expression this way.
create my own containers. AAMOF, that's what I'm doing. I don't need
nor even want iterators. Is wrapping the array in some kind of class type
object the only viable approach to passing arrays around?


Yes, actually. That's a very common approach. Wrapping it in a struct
is the simplest thing, and has worked for generations of C programmers.

You could, of course, try to work with _references_ to arrays, but the
syntax is really convoluted, to say the least. Although, you coudl get
around it with some typedefs...

typedef double (&dMatrix3x3)[3][3];


I believe that's the/an answer I was fishing for. The obvious problem with
pointers, references and arrays is that of discriminating between a pointer
to an array and an array of pointers. Likewise for references.

BTW. I tried to figure out if it was meaningful to create an array of
references to the elements of another array. For example,
float m[3][3];
float& ref_m[3][3]; // somehow make ref_m[i][j] == m[j][i];

I concluded that this could not be done. Am I correct?

--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #9
// this doesn't work:
void print(unsigned rowSize, float* mat[]){/*...*/}
error: cannot convert `float (*)[3]' to `float**' for argument `2'
to `void print(unsigned int, float**)'

// nor does this:
void print(unsigned rowSize, float** mat){/*...*/}
error: cannot convert `float (*)[3]' to `float**' for argument `2'
to `void print(unsigned int, float**)'

// Now, this lovely bit of hackerie *does* work

void print(unsigned rowSize, float* mat00)


Try

void print(unsigned rowSize, float blah[3]);
-JKop
Jul 22 '05 #10
Steven T. Hatton wrote:
cout << "\n---------- matrix mat** -----------\n";
for(unsigned i = 0; i < size; i++)
{
if(i%rowSize == 0 && i != 0){cout<<"\n";}
cout << setw(4) << *(*(mat + i/size ) + i%size) <<" ";

the i/size and i%size can be replace with one i. These were carried over
from another form of the function that required them.
--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #11
Steven T. Hatton wrote:
[...]
BTW. I tried to figure out if it was meaningful to create an array of
references to the elements of another array. For example,
float m[3][3];
float& ref_m[3][3]; // somehow make ref_m[i][j] == m[j][i];

I concluded that this could not be done. Am I correct?


You cannot have an array of references. You can, however, have
a reference to an array (as you saw). You can wrap your reference
in a struct and have an array of that struct:

template<class T> struct ref {
T &d;
ref(T &d) : d(d) {}
};

The problem, however, is in initialising it. You would have to
intialise the elements of that array all manually:

float m[3][3];
ref<float> rm[3][3] = { { m[0][0], m[0],[1] ...

so I don't think it's a viable alternative.

Victor
Jul 22 '05 #12
Victor Bazarov wrote:
Steven T. Hatton wrote:
[...]
BTW. I tried to figure out if it was meaningful to create an array of
references to the elements of another array. For example,
float m[3][3];
float& ref_m[3][3]; // somehow make ref_m[i][j] == m[j][i];

I concluded that this could not be done. Am I correct?


You cannot have an array of references. You can, however, have
a reference to an array (as you saw). You can wrap your reference
in a struct and have an array of that struct:

template<class T> struct ref {
T &d;
ref(T &d) : d(d) {}
};

The problem, however, is in initialising it. You would have to
intialise the elements of that array all manually:

float m[3][3];
ref<float> rm[3][3] = { { m[0][0], m[0],[1] ...

so I don't think it's a viable alternative.

Victor


I don't believe that's any better than using an array of pointers. Unless
I'm missing something, you would have to access the data as rm[i][j].d
wouldn't you? What I was shooting for was something that acted just like
the array, but was indexed as it's transpose. For now, I don't have a use
for it because I took a different approach to solving the immediate
problem.

I do however have another question along these lines.

This works:

template < unsigned REMAINING, unsigned ORDER, typename T1, typename T2,
typename OP>
class Array2OpAssign {
public:
typedef T1 (&rank1T1)[ORDER];
typedef T1 (&rank1T2)[ORDER];

static rank1T1 result(rank1T1 a1, const rank1T2 a2) {
OP op;
a1[ORDER - REMAINING] = op(a1[ORDER - REMAINING], a2[ORDER - REMAINING]);
return Array2OpAssign<REMAINING - 1, ORDER, T1, T2, OP>::result(a1,a2);
}
};
However, this doesn't:

template <unsigned ORDER, typename T1, typename T2>
typedef T1 (&rank1T1)[ORDER]; // this ain't legal
typedef T1 (&rank1T2)[ORDER];
inline rank1T1 array2PlusAssign( rank1T1 a1, const rank1T2 a2)
{
return Array2OpAssign<ORDER,ORDER, T1, T2, Plus<T1, T2> >::result(a1,
a2);
}

perhaps playing with typedefs on the calling end is the way to go. I don't
particularly like that idea. It's much nicer to have a clean convenience
function that invokes the static function on the Array2OpAssign. Any
suggestions on how to template that typedef for a function template return
type?

--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #13
JKop wrote:
You could, of course, try to work with _references_ to arrays, but the
syntax is really convoluted, to say the least.

I disagree. It's simple operator and operand precedence:
int &k[5]; //an array of 5 references to integers

int (&k)[5]; //a reference to an array of 5 integers
-JKop


template <unsigned ORDER, typename T1, typename T2 >
T1 (&array2PlusAssign(T1(&t1)[ORDER], T2(&t2)[ORDER]))[ORDER]

That's f'ing psycho! Convoluted it far too kind!

Oh, and try setting the second parameter to const.

--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #14
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...
Victor Bazarov wrote:
Steven T. Hatton wrote:
[...]
BTW. I tried to figure out if it was meaningful to create an array of
references to the elements of another array. For example,
float m[3][3];
float& ref_m[3][3]; // somehow make ref_m[i][j] == m[j][i];

I concluded that this could not be done. Am I correct?
You cannot have an array of references. You can, however, have
a reference to an array (as you saw). You can wrap your reference
in a struct and have an array of that struct:

template<class T> struct ref {
T &d;
ref(T &d) : d(d) {}
};

The problem, however, is in initialising it. You would have to
intialise the elements of that array all manually:

float m[3][3];
ref<float> rm[3][3] = { { m[0][0], m[0],[1] ...

so I don't think it's a viable alternative.

Victor


I don't believe that's any better than using an array of pointers. Unless
I'm missing something, you would have to access the data as rm[i][j].d
wouldn't you?


You could just add

operator T () const;
operator T& ();

to the struct and you don't need .d any more, AFAIUI.
What I was shooting for was something that acted just like
the array, but was indexed as it's transpose. For now, I don't have a use
for it because I took a different approach to solving the immediate
problem.
Whatever.

I do however have another question along these lines.

This works:

template < unsigned REMAINING, unsigned ORDER, typename T1, typename T2,
typename OP>
class Array2OpAssign {
public:
typedef T1 (&rank1T1)[ORDER];
typedef T1 (&rank1T2)[ORDER];

static rank1T1 result(rank1T1 a1, const rank1T2 a2) {
OP op;
a1[ORDER - REMAINING] = op(a1[ORDER - REMAINING], a2[ORDER -
REMAINING]);
return Array2OpAssign<REMAINING - 1, ORDER, T1, T2,
OP>::result(a1,a2);
}
};
However, this doesn't:

template <unsigned ORDER, typename T1, typename T2>
typedef T1 (&rank1T1)[ORDER]; // this ain't legal
Nonsense. Why ain't it legal?
typedef T1 (&rank1T2)[ORDER];
inline rank1T1 array2PlusAssign( rank1T1 a1, const rank1T2 a2)
{
return Array2OpAssign<ORDER,ORDER, T1, T2, Plus<T1, T2> >::result(a1,
a2);
}

perhaps playing with typedefs on the calling end is the way to go. I
don't
particularly like that idea. It's much nicer to have a clean convenience
function that invokes the static function on the Array2OpAssign. Any
suggestions on how to template that typedef for a function template return
type?


I have no idea what you're talking about. This compiles just fine
(as it should, of course):

template<unsigned U, typename T> class C {
typedef T (&Tarrref)[u];
public:
C();
void foo(Tarrref r);
};

int main() {
C<5,int> c;
int a[5];
c.foo(a);
}

Victor
Jul 22 '05 #15
Victor Bazarov wrote:
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...
I don't believe that's any better than using an array of pointers. Unless
I'm missing something, you would have to access the data as rm[i][j].d
wouldn't you?


You could just add

operator T () const;
operator T& ();

to the struct and you don't need .d any more, AFAIUI.


I believe that will work. I need to give it a whack. I did something like
that for a similar situation last night and it worked. I had forgotten
about type conversion operators. Good call!
What I was shooting for was something that acted just like
the array, but was indexed as it's transpose. For now, I don't have a
use for it because I took a different approach to solving the immediate
problem.


Whatever.


But it /is/ nice to know I can do it. Now that I see that I probably /can/
make a transpose pointer matrix act like a normal matrix, that opens a lot
of possibilities. It's much easier to think about orthogonal
transformations and the like when I can use (almost) real transpose
(inverse) matrices rather than simulating them by dancing around with the
indeces.
template <unsigned ORDER, typename T1, typename T2>
typedef T1 (&rank1T1)[ORDER]; // this ain't legal


Nonsense. Why ain't it legal?


Look at it again.
typedef T1 (&rank1T2)[ORDER];
inline rank1T1 array2PlusAssign( rank1T1 a1, const rank1T2 a2)
{
return Array2OpAssign<ORDER,ORDER, T1, T2, Plus<T1, T2>
>::result(a1,

a2);
}

perhaps playing with typedefs on the calling end is the way to go. I
don't
particularly like that idea. It's much nicer to have a clean convenience
function that invokes the static function on the Array2OpAssign. Any
suggestions on how to template that typedef for a function template
return type?


I have no idea what you're talking about. This compiles just fine
(as it should, of course):

template<unsigned U, typename T> class C {
typedef T (&Tarrref)[u];
public:
C();
void foo(Tarrref r);
};


I tend to write:
template<unsigned U, typename T>
class C {
/*...*/
};

It avoids confusion. ;)

--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #16
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...
Victor Bazarov wrote:
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote... [...]
template <unsigned ORDER, typename T1, typename T2>
typedef T1 (&rank1T1)[ORDER]; // this ain't legal
Nonsense. Why ain't it legal?


Look at it again.


Stop playing games and state your opinion. If you have any, that is.
[..]

Jul 22 '05 #17
Victor Bazarov wrote:
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...
Victor Bazarov wrote:
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote... [...] template <unsigned ORDER, typename T1, typename T2>
typedef T1 (&rank1T1)[ORDER]; // this ain't legal

Nonsense. Why ain't it legal?


Look at it again.


Stop playing games and state your opinion.

#include <iostream>
#include <string>

template <typename T>
typedef T Tfoo;
T foo(T& tf){return tf;}

int main()
{
std::string bar = "This is foo.\n";
std::cout << foo(bar);
}
//--------------EOF----------------
hattons@ljosalfr:~/code/c++/scratch/typedef/
Mon Oct 11 01:08:18:> g++ -ofoo main.cc
main.cc:5: error: template declaration of `typedef T Tfoo'
main.cc:6: error: `T' was not declared in this scope
main.cc:6: error: `tf' was not declared in this scope
main.cc:6: error: syntax error before `{' token
main.cc: In function `int main()':
main.cc:11: error: `foo' undeclared (first use this function)
main.cc:11: error: (Each undeclared identifier is reported only once for
each
function it appears in.)
hattons@ljosalfr:~/code/c++/scratch/typedef/
Mon Oct 11 01:08:19:>

#include <iostream>
#include <string>

template <typename T>
//typedef T Tfoo;
T foo(T& tf){return tf;}

int main()
{
std::string bar = "This is foo\n";
std::cout<< foo(bar);
}
//--------------EOF----------------

hattons@ljosalfr:~/code/c++/scratch/typedef/
Mon Oct 11 01:08:29:> g++ -ofoo main.cc
You have new mail in /var/spool/mail/hattons
hattons@ljosalfr:~/code/c++/scratch/typedef/
Mon Oct 11 01:15:04:>

It's a function template not a class template. You can put a typedef there.
If you have any, that is.

[..]


foo
--
"If our hypothesis is about anything and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true." - Bertrand
Russell

Jul 22 '05 #18
Steven T. Hatton wrote:
[..]
template <unsigned ORDER, typename T1, typename T2 >
T1 (&array2PlusAssign(T1(&t1)[ORDER], T2(&t2)[ORDER]))[ORDER]

That's f'ing psycho! Convoluted it far too kind!

Oh, and try setting the second parameter to const.


References themselves cannot be set to const because they are not
objects. You _can_ make 'T2' const:

template <unsigned ORDER, typename T1, typename T2 >
T1 (&a2PA(T1(&t1)[ORDER], T2 const(&t2)[ORDER]))[ORDER]
.. ^^^^^

V
Jul 22 '05 #19
Steven T. Hatton wrote:
Victor Bazarov wrote:

"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...
Victor Bazarov wrote:
"Steven T. Hatton" <su******@setidava.kushan.aa> wrote...


[...]
>template <unsigned ORDER, typename T1, typename T2>
> typedef T1 (&rank1T1)[ORDER]; // this ain't legal

Nonsense. Why ain't it legal?

Look at it again.


Stop playing games and state your opinion.


It's a function template not a class template. You can put a typedef there.


I missed the fact that you decided to make it stand-alone function.
My impression was that you were talking about replacing the body of
the class definition with that other code. Apologies.

V
Jul 22 '05 #20

This thread has been closed and replies have been disabled. Please start a new discussion.

Similar topics

6
by: Krackers | last post by:
How do you write a function which returns a reference to an array. I can only get a function to return a copy of the array itself. I've had a look at some other threads in this group an the return...
7
by: BrianJones | last post by:
Hi, if you have a function, how is it possible to return an array? E.g.: unsigned long function(...) // what I want to do, obviously illegal I do know such would be possible by using a dynamic...
10
by: Fraser Ross | last post by:
I need to know the syntax for writing a reference of an array. I haven't seen it done often. I have a class with a member array and I want a member function to return an reference to it. ...
41
by: Materialised | last post by:
I am writing a simple function to initialise 3 variables to pesudo random numbers. I have a function which is as follows int randomise( int x, int y, intz) { srand((unsigned)time(NULL)); x...
3
by: Faustino Dina | last post by:
Hi, The following code is from an article published in Informit.com at http://www.informit.com/guides/content.asp?g=dotnet&seqNum=142. The problem is the author says it is not a good idea to...
5
by: Stacey Levine | last post by:
I have a webservice that I wanted to return an ArrayList..Well the service compiles and runs when I have the output defined as ArrayList, but the WSDL defines the output as an Object so I was...
17
by: I.M. !Knuth | last post by:
Hi. I'm more-or-less a C newbie. I thought I had pointers under control until I started goofing around with this: ...
13
by: Karl Groves | last post by:
I'm missing something very obvious, but it is getting late and I've stared at it too long. TIA for responses I am writing a basic function (listed at the bottom of this post) that returns...
0
by: anuptosh | last post by:
Hi, I have been trying to run the below example to get a Oracle Array as an output from a Java code. This is an example I have found on the web. But, the expected result is that the code should...
5
by: ctj951 | last post by:
I have a very specific question about a language issue that I was hoping to get an answer to. If you allocate a structure that contains an array as a local variable inside a function and return...
0
by: Charles Arthur | last post by:
How do i turn on java script on a villaon, callus and itel keypad mobile phone
0
by: ryjfgjl | last post by:
In our work, we often receive Excel tables with data in the same format. If we want to analyze these data, it can be difficult to analyze them because the data is spread across multiple Excel files...
0
by: emmanuelkatto | last post by:
Hi All, I am Emmanuel katto from Uganda. I want to ask what challenges you've faced while migrating a website to cloud. Please let me know. Thanks! Emmanuel
1
by: Sonnysonu | last post by:
This is the data of csv file 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 3 the lengths should be different i have to store the data by column-wise with in the specific length. suppose the i have to...
0
by: Hystou | last post by:
Most computers default to English, but sometimes we require a different language, especially when relocating. Forgot to request a specific language before your computer shipped? No problem! You can...
0
Oralloy
by: Oralloy | last post by:
Hello folks, I am unable to find appropriate documentation on the type promotion of bit-fields when using the generalised comparison operator "<=>". The problem is that using the GNU compilers,...
0
jinu1996
by: jinu1996 | last post by:
In today's digital age, having a compelling online presence is paramount for businesses aiming to thrive in a competitive landscape. At the heart of this digital strategy lies an intricately woven...
0
by: Hystou | last post by:
Overview: Windows 11 and 10 have less user interface control over operating system update behaviour than previous versions of Windows. In Windows 11 and 10, there is no way to turn off the Windows...
0
agi2029
by: agi2029 | last post by:
Let's talk about the concept of autonomous AI software engineers and no-code agents. These AIs are designed to manage the entire lifecycle of a software development project—planning, coding, testing,...

By using Bytes.com and it's services, you agree to our Privacy Policy and Terms of Use.

To disable or enable advertisements and analytics tracking please visit the manage ads & tracking page.