

 473,256 Members | 3,229 Online
 	 Sign in
	 Create Account

 Post Job

 Home Posts Topics Members FAQ

 home > topics > microsoft access / vba > questions

 >

	 how do i create pdf reports from access?

 Join Bytes to post your question to a community of 473,256 software developers and data experts.

 	 How do I create pdf reports from Access?
 	
 dog

 		 I've seen plenty of articles on this topic but none of them have been

able to solve my problem.

I am working with an Access 97 database on an NT4.0 machine, which has

many Access reports.

I want my users to be able to select a report, click on a command

button on a form, which will then automatically create the report as a

pdf file and save it to the user's machine.

I am using Adobe Acrobat (5.0 I think) and have Adobe Distiller as a

printer. I can get my code to change my default printer to Adobe

Distiller, and using the Docmd.OutputTo, it will begin to create the

file.

However what then happens is: a ‘Save File As' dialog box appears,

prompts me to click on ‘OK' and when I do, the report is created and

saved, but Adobe then open the report. I want my code to be able to

override this dialog box and automatically save the report with a file

name I put in a variable, and stop Adobe from opening at the end.

I have looked at using the properties in Adobe but they don't seem to

help.

Is what I want to do possible? I don't know and unfortunately I work

for a large organisation and have to use Adobe and no other product –

free or not.

I'm fairly new to VBA programming and messing with the registry is

beyond me so if anyone has any ideas, or better still has the code, it

would be much appreciated.

Many Thanks.

			
			
			
			
				Nov 13 '05
	 #1
 Subscribe Post Reply

 7 8782

 (Pete Cresswell)

 		 RE/However what then happens is: a ?Save File As' dialog box appears,
prompts me to click on ?OK' and when I do, the report is created and
saved, but Adobe then open the report. I want my code to be able to
override this dialog box and automatically save the report with a file
name I put in a variable, and stop Adobe from opening at the end.
I have looked at using the properties in Adobe but they don't seem to
help.

Is what I want to do possible? I don't know and unfortunately I work
for a large organisation and have to use Adobe and no other product ?
free or not.

Assuming that all users have PdfWriter (couple hundred dollars per seat)

installed on their PC's, what you do is use the registry as your interface to

Acrobat. You set parms for file name and a couple other things and then just

let it rip.

Here's some code that includes handling .PDF. It's a class and is probably

wretched excess for what you want to do...but the code is there TB teased out as

needed. What's missing is the code to look at the user's printers and figure

out whether PdfWriter is available. I do that outside of the class BC I use

the results to enable/disable the "PDF" button/option on the screen in question.

If it looks promising, let me know and we'll figure out a way for me to email it

as an attachment - since our respective email programs have probably made hash

out of the line breaks...

== ==============================

VERSION 1.0 CLASS

BEGIN

MultiUse = -1 'True

END

Attribute VB_Name = "clsReportPrinter"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = False

Attribute VB_PredeclaredId = False

Attribute VB_Exposed = False

Option Compare Database ' Next available line# series = 8000

Option Explicit

Private Const mVersionNumber = "2.1c" 'Rearranged Types/Constants:

wasn't compiling after decompile because definition of constant didn't preceede

use of same.

Private Const mModuleName = "clsReportPrinter"

' PURPOSE: To provide a way to print MS Access reports to named printers

' and to coerce output characteristics like paper size and

orientation.

'

' Also enables batch printing to Adobe's PDF Writer by supressing

' it's common file dialog and programaticaly supplying file paths.

'

' Intended particularly for batch operations in which

' we need to print many reports, typically looping through

' a work table that contains names of reports to be printed

' along with desired paper size, orientation, and copies.

'

' Also intended to address a recurrant problem in which

' a user changes their system default printer and any reports

' that are set up for, say, legal/landscape, automatically revert

' to the new printer's default settings (usually letter/portrait).

'

' ERRORS: - All error checking is postponed until the calling app invokes

the .PrintReport method.

' After the .PrintReport method has been invoked, the calling app

is responsible for checking

' the .ErrorCount property and displaying .ErrorList if there are

any errors.

' - All errors are 'Fatal' in that no printing will take place if

there is even a single error.

' - Error messages may be sent to up to three places

' > All errors get written to the .ErrorList property, which is

available to the calling

' app once the .PrintReport method has been invoked.

' > Runtime/program errors also bubble up to the calling routine

as trappable errors

' > Runtime/program errors also get written to a log file in the

same directory as the

' calling application unless the user specifies another path via

the .ErrorLogPath property

' - If no printer is installed on the PC, only that condition is

reported, but all other checking

' is suppressed.

'

' METHODS: .PrintReport Causes report to be printed once all needed

properties are set

'

' PROPERTIES

' REQUIRED: -> .ReportName String containing name of report to be printed

' OPTIONAL:

' -> .PdfDir A path to the directory into which a .PDF file

' will be written to. Should NOT include the

name of the file.

' Defaults to application directory.

' e.g. C:\TEMP is correct. C:\TEMP\Whatever.PDF

is incorrect.

' -> .PrinterName String containing the UNC of the printer. If

not supplied,

' PC's default printer is used. If no default

printer, an error

' is reported.

' -> .ErrorLogPath String telling where to write error log for

program errors

' seldom actually used, since most errors are data

errors and written

' to the .ErrorList....useful, however, in case

the the code generates

' a runtime error and you want a record. Runtime

errors also

' bubble up to the calling routine where they can

be trapped/displayed.

' Defaults to application directory.

' -> (Any and all parameters used in setting up a printer. e.g.

..Copies,

' .Orientation, .PaperSize, and so-forth.)

' Refer to Appendix A of documentation for

details.

' READ-ONLY:

' <- .ErrorCount Numeric containing the number (if any) of errors

encountered.

' If .ErrorCount>0, the report did not get printed

' <- .ErrorList String containing a description of each error

encountered.

'

' ===============> NEED MORE PROPERTY DESCRIPTIONS

<===================

'

'

' DEFAULTS (set in Class_Initialize):

' .PrinterName=(name of PC's 'Default' printer)

' .Collate=False

' .Copies=1

' .Color=Monochrome

' .DefaultSource=Auto

' .Duplex=Simplex

' .GetPdfFileNameFrom=Report's Caption

' .Orientation=Portrait

' .PaperSize=Letter

' .PdfDir=(application's directory)

' .PrinterName=PC's default printer

' .PrintQuality=High

'

' REQUIRES: - A reference to 'Microsoft Active-X Data Objects 2.1 Library'

'

' NOTES: 1) While the class is having properties assigned, it will accept

just about anything

' for any property. All of the validation is done when the

..PrintReport method is invoked.

'

' HOW TO USE: 1) Getting it into your app:

' - Open up a code window by doubleclicking one of the modules

' - Use File/Import File to import clsReportPrinter.cls

' NB: Importing directly from another Access app will NOT

work...

' ...somethng to do with invisible header information that

gets

' lost when importing from an Access app...must be imported

from

' a text file.

' - Do a Debug/Compile to make sure everyting is OK.

'

' 2) Invoking it to print a report:

' - The clsReportPrinter object can be instantiated once, and

then used to print many reports.

' - Sample code for printing the same report four times using

different options,

' and then printing a second report:

'

'

== ===================

' Sub ReportPrintExample()

'

' Dim myReportPrinter As clsReportPrinter

'

' Set myReportPrinter = New clsReportPrinter

'

' With myReportPrinter

' .ReportName = "rptBillableHoursByDay"

' .PrintReport 'Report goes to

default printer in default orientation (portrait)

' If .ErrorCount > 0 Then 'using report's

..Caption for file name if default is PDF Writer.

' MsgBox .ErrorList, vbCritical, "Print Failed"

' End If

'

' .PrinterName = "Acrobat PDFWriter"

' .PdfDir = "C:\Temp"

' .GetPdfFileNameFrom = rpGetFromReportName

' .PrintReport 'Report goes to

..PDF file using report's object name as file name.

' If .ErrorCount > 0 Then

' MsgBox .ErrorList, vbCritical, "Print Failed"

' End If

'

' .GetPdfFileNameFrom = rpGetFromReportCaption

' .LaunchAcrobat = True 'Report goes to

..PDF file using report's .Caption name as file name

' .PrintReport 'and Acrobat is

opened to show report.

' If .ErrorCount > 0 Then

' MsgBox .ErrorList, vbCritical, "Print Failed"

' End If

'

' .PrinterName = "\\NtPrt41\InvstPrt"

' .Copies = 2

' .Orientation = rpOrient_Landscape

' .PrintReport 'Two copies of

report go to specified printer in landscape orientation.

' If .ErrorCount > 0 Then

' MsgBox .ErrorList, vbCritical, "Print Failed"

' End If

'

' .ReportName = "rptVanguardTimeSheet" 'As above, two

copies go to specified printer in landscape orientation

' .PrintReport 'because .Copies,

..PrinterName, and .Orientation are still set.

' End With

'

' On Error Resume Next

' Set myReportPrinter = Nothing

' Exit Sub

' End Sub

'

== ===================

'

' Pete Cresswell

' 03/22/2001

' 610-513-0066

Private Const mPdfPrinterName = "Acrobat PDFWriter" 'SB exactly the same as

name that shows up in "myComputer/Printers"

Private Const adhcMaxDevice = 32

Private Const adhcDevNamesFixed = 8

Private Const adhcFixedChars = adhcDevNamesFixed / 2

Private Const mDriverStringLenBinName = 24

Private Const mDriverStringLenPaperName = 64

Private Const mDriverStringLenBinDependency = 64

Private Const mFormNameLen = 32

Private Const mPrinterNameLen = 32

'Private Const mCallStackLim = 50

Private Const mCallStackLim = 150

Private mCallStack(mCallStackLim)

Private mCallStackPointer As Integer

Private Const mErrorListMessagePrefix = "- "

Private Const mDevModeFudgeFactor = 2048

Private Const mDevModeSize = 148

Private Const mDevModeSizeLim = mDevModeSize + mDevModeFudgeFactor

Private Type mPrinterStruct

IsDefaultPrinter As Boolean

DeviceName As String

DriverName As String

Port As String

End Type

Private Type mPrtDevModeStruct

strDeviceName(1 To mPrinterNameLen) As Byte

intSpecVersion As Integer

intDriverVersion As Integer

intSize As Integer

intDriverExtra As Integer

lngFields As Long

intOrientation As Integer

intPaperSize As Integer

intPaperLength As Integer

intPaperWidth As Integer

intScale As Integer

intCopies As Integer

intDefaultSource As Integer

intPrintQuality As Integer

intColor As Integer

intDuplex As Integer

intYResolution As Integer

intTTOption As Integer

intCollate As Integer

strFormName(1 To mFormNameLen) As Byte

intLogPixels As Integer

lngBitsPerPixel As Long

lngPelsWidth As Long

lngPelsHeight As Long

lngDisplayFlags As Long

lngDisplayFrequency As Long

lngICMMethod As Long

lngICMIntent As Long

lngMediaType As Long

lngDitherType As Long

lngReserved1 As Long

lngReserved2 As Long

bytDriverExtra(1 To mDevModeFudgeFactor) As Byte

End Type

Private Type mDevModeStringStruct

strDevMode As String * mDevModeSizeLim

End Type

Private Type mDevNamesOffsetInfoStruct

DriverOffset As Integer

DeviceOffset As Integer

OutputOffset As Integer

IsDefaultPrinter As Integer

End Type

Private Type mDevNamesOffsetStringStruct

strDevInfo As String * adhcFixedChars

End Type

Private Type mDoubleWordStruct

Value As Long

End Type

Private Type mSplitWordStruct

LoWord As Integer

HiWord As Integer

End Type

Private Type mXyPoint

x As Long

Y As Long

End Type

Public Enum rpDmBitFields ' Constants for Bitfields for the

Fields member of the DevMode structure.

rp_Color = &H800

rp_Collate = &H8000

rp_Copies = &H100

rp_DefaultSource = &H200

rp_Duplex = &H1000

rp_Orientation = &H1

rp_PaperLength = &H4

rp_PaperSize = &H2

rp_PaperWidth = &H8

rp_PrintQuality = &H400

rp_Scale = &H10

rp_Y_Resolution = &H2000

' rp_T_Option = &H4000

End Enum

'Private Enum dmTrueType

' DMTT_BITMAP = 1

' DMTT_DOWNLOAD = 2

' DMTT_SUBDEV = 4

' DMTT_DOWNLOAD_OUTLINE = 8

'End Enum

'Private mlngTT As dmTrueType

Public Enum rpCollate ' Constants for Collate property

rpCollate_True = 1

rpCollate_False = 0

End Enum

Public Enum rpColor ' Constants for Color property

rpColor_Monochrome = 1

rpColor_Color = 2

End Enum

Public Enum rpDefaultSource ' Constants for DefaultSource

property

rpSrc_Upper = 1

rpSrc_OnlyOne = 1

rpSrc_Lower = 2

rpSrc_Middle = 3

rpSrc_Manual_Feed = 4

rpSrc_Envelope = 5

rpSrc_Envelope_Manual_Feed = 6

rpSrc_Auto = 7

rpSrc_Tractor = 8

rpSrc_Small_Format = 9

rpSrc_Large_Format = 10

rpSrc_Large_Capacity = 11

rpSrc_Cassette = 14

rpSrc_Form_Source = 15

rpSrc_User = 256

End Enum

Public Enum rpDuplex ' Constants for Duplex property

rpDuplex_Simplex = 1

rpDuplex_Vertical = 2

rpDuplex_Horizontal = 3

End Enum

Public Enum rpGetPdfFileNameFrom

rpGetFromReportName = 1

rpGetFromReportCaption = 2

End Enum

Public Enum rpOrientation ' Constants for Orientation

property

rporient_Portrait = 1

rporient_landscape = 2

End Enum

Public Enum rpPaperSize ' Constants for PaperSize property

rpPaper_Letter = 1 ' Letter 8 1/2 x 11

rpPaper_LetterSmall = 2 ' Letter Small 8 1/2 x 11

rpPaper_Tabloid = 3 ' Tabloid 11 x 17

rpPaper_Ledger = 4 ' Ledger 17 x 11

rpPaper_Legal = 5 ' Legal 8 1/2 x 14

rpPaper_Statement = 6 ' Statement 5 1/2 x 8 1/2

rpPaper_Executive = 7 ' Executive 7 1/4 x 10 1/2

rpPAPER_A3 = 8 ' A3 297 x 420 mm

rpPaper_A4 = 9 ' A4 210 x 297 mm

rpPaper_A4_Small = 10 ' A4 Small 210 x 297 mm

rpPaper_A5 = 11 ' A5 148 x 210 mm

rpPaper_B4 = 12 ' B4 (JIS) 250 x 354 mm

rpPaper_B5 = 13 ' B5 (JIS) 182 x 257 mm

rpPaper_FOLIO = 14 ' Folio 8 1/2 x 13

rpPaper_QUARTO = 15 ' Quarto 215 x 275 mm

rpPaper_10X14 = 16 ' 10x14 in

rpPaper_11X17 = 17 ' 11x17 in

rpPaper_NOTE = 18 ' Note 8 1/2 x 11 in

rpPaper_Env_9 = 19 ' Envelope #9 3 7/8 x 8 7/8

rpPaper_Env_10 = 20 ' Envelope #10 4 1/8 x 9 1/2

rpPaper_Env_11 = 21 ' Envelope #11 4 1/2 x 10 3/8

rpPaper_Env_12 = 22 ' Envelope #12 4 \276 x 11

rpPaper_Env_14 = 23 ' Envelope #14 5 x 11 1/2

rpPaper_C_Sheet = 24 ' C size sheet

rpPaper_D_Sheet = 25 ' D size sheet

rpPaper_E_Sheet = 26 ' E size sheet

rpPaper_Env_DL = 27 ' Envelope DL 110 x 220mm

rpPaper_Env_C5 = 28 ' Envelope C5 162 x 229 mm

rpPaper_Env_C3 = 29 ' Envelope C3 324 x 458 mm

rpPaper_Env_C4 = 30 ' Envelope C4 229 x 324 mm

rpPaper_Env_C6 = 31 ' Envelope C6 114 x 162 mm

rpPaper_Env_C65 = 32 ' Envelope C65 114 x 229 mm

rpPaper_Env_B4 = 33 ' Envelope B4 250 x 353 mm

rpPaper_Env_B5 = 34 ' Envelope B5 176 x 250 mm

rpPaper_Env_B6 = 35 ' Envelope B6 176 x 125 mm

rpPaper_Env_ITALY = 36 ' Envelope 110 x 230 mm

rpPaper_Env_Monarch = 37 ' Envelope Monarch 3.875 x 7.5

rpPaper_Env_Personal = 38 ' Envelope 3 5/8 x 6 1/2

rpPaper_FanFold_US = 39 ' US Std Fanfold 14 7/8 x 11

rpPaper_FanFold_Std_German = 40 ' German Std Fanfold 8 1/2 x 12

rpPaper_FanFold_Lgl_German = 41 ' German Legal Fanfold 8 1/2 x 13

rpPaper_ISO_B4 = 42 ' B4 (ISO) 250 x 353 mm

rpPaper_Japanese_Postcard = 43 ' Japanese Postcard 100 x 148 mm

rpPaper_9X11 = 44 ' 9 x 11

rpPaper_10X11 = 45 ' 10 x 11

rpPaper_15X11 = 46 ' 15 x 11

rpPaper_Env_Invite = 47 ' Envelope Invite 220 x 220 mm

rpPaper_Reserved_48 = 48 ' RESERVED--DO NOT USE

rpPaper_Reserved_49 = 49 ' RESERVED--DO NOT USE

rpPaper_Letter_Extra = 50 ' Letter Extra 9 x 12

rpPaper_LEGAL_Extra = 51 ' Legal Extra 9 x 15

rpPaper_Tabloid_Extra = 52 ' Tabloid Extra 11.69 x 18

rpPaper_A4_Extra = 53 ' A4 Extra 9.27 x 12.69

rpPaper_Letter_Transverse = 54 ' Letter Transverse 8 \275 x 11

rpPaper_A4_Transverse = 55 ' A4 Transverse 210 x 297 mm

rpPaper_Letter_Extra_Transverse = 56 ' Letter Extra Transverse 9\275 x

12

rpPaper_A_Plus = 57 ' SuperA/SuperA/A4 227 x 356 mm

rpPaper_B_Plus = 58 ' SuperB/SuperB/A3 305 x 487 mm

rpPaper_Letter_Plus = 59 ' Letter Plus 8.5 x 12.69

rpPaper_A4_Plus = 60 ' A4 Plus 210 x 330 mm

rpPaper_A5_Transverse = 61 ' A5 Transverse 148 x 210 mm

rpPaper_B5_Transverse = 62 ' B5 (JIS) Transverse 182 x 257 mm

rpPaper_A3_Extra = 63 ' A3 Extra 322 x 445 mm

rpPaper_A5_Extra = 64 ' A5 Extra 174 x 235 mm

rpPaper_B5_Extra = 65 ' B5 (ISO) Extra 201 x 276 mm

rpPaper_A2 = 66 ' A2 420 x 594 mm

rpPaper_A3_Transverse = 67 ' A3 Transverse 297 x 420 mm

rpPaper_A3_Extra_Transverse = 68 ' A3 Extra Transverse 322 x 445 mm

rpPaper_User = 256 ' ?????

End Enum

Public Enum rpPrintQuality ' Constants for PrintQuality property

rpQual_Draft = -1

rpQual_Low = -2

rpQual_Medium = -3

rpQual_High = -4

End Enum

'Public Enum rpTrueType

' rpTT_BitMap = 1

' rpTT_DownLoad = 2

' rpTT_DubDev = 3

' rpTT_DownLoad_Outline = 4

'End Enum

Private mCurView As Integer

Private mCurPdfDir As String

Private mCurFilter As String

Private mCurDevMode As mPrtDevModeStruct

Private mCurErrorList As String

Private mCurPrinters() As mPrinterStruct 'The class's list of all

printers installed on this PC

Private mCurErrorCount As Long

Private mCurReportName As String

Private mCurPrinterName As String

Private mCurErrorLogPath As String

Private mCurLaunchAcrobat As Boolean

Private mCurGetPdfFileNameFrom As Long

Private mCurShowPdfRegistryInfo As Boolean

Private mCurReportFileNamePrefix As String

Private mCurReportFileNameSuffix As String

Public Enum rpView

rpViewNormal = acViewNormal

rpViewPreview = acViewPreview

End Enum

Private Declare Function ClosePrinter Lib "winspool.drv" (ByVal hPrinter As

Long) As Long

Private Declare Function DocumentProperties Lib "winspool.drv" Alias

"DocumentPropertiesA" (ByVal hwnd As Long, ByVal hPrinter As Long, ByVal

pDeviceName As String, pDevModeOutput As Byte, pDevModeInput As Byte, ByVal

fMode As Long) As Long

Private Declare Function GetComputerName Lib "kernel32" Alias "GetComputerNameA"

(ByVal lpBuffer As String, nSize As Long) As Long

Private Declare Function GetProfileSection Lib "kernel32" Alias

"GetProfileSectionA" (ByVal lpAppName As String, ByVal lpReturnedString As

String, ByVal lngSize As Long) As Long

Private Declare Function GetProfileString Lib "kernel32" Alias

"GetProfileStringA" (ByVal lpAppName As String, ByVal lpKeyName As String, ByVal

lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As Long) As

Long

Private Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA"

(ByVal lpBuffer As String, nSize As Long) As Long

Private Declare Function OpenPrinter Lib "winspool.drv" Alias "OpenPrinterA"

(ByVal pPrinterName As String, phPrinter As Long, ByVal pDefault As Long) As

Long

Private Declare Function DeviceCapabilitiesAny Lib "winspool.drv" Alias

"DeviceCapabilitiesA" (ByVal strDeviceName As String, ByVal strPort As String,

ByVal lngIndex As Long, lpOutput As Any, ByVal lngDevMode As Long) As Long

Private Declare Function DeviceCapabilitiesLng Lib "winspool.drv" Alias

"DeviceCapabilitiesA" (ByVal strDeviceName As String, ByVal strPort As String,

ByVal lngIndex As Long, ByVal lngOutput As Long, ByVal lngDevMode As Long) As

Long

Private Declare Function DeviceCapabilitiesStr Lib "winspool.drv" Alias

"DeviceCapabilitiesA" (ByVal strDeviceName As String, ByVal strPort As String,

ByVal lngIndex As Long, ByVal strOutput As String, ByVal lngDevMode As Long) As

Long

Private Enum mDeviceCapabilityTypes ' Constants for Device Capabilities

dcFields = 1

dcPapers = 2

dcPapersize = 3

dcMinExtent = 4

dcMaxExtent = 5

dcBins = 6

dcDuplex = 7

dcSize = 8

dcExtra = 9

dcVersion = 10

dcDriver = 11

dcBinNames = 12

dcEnumResolutions = 13

dcFileDependencies = 14

dcTrueType = 15

dcPaperNames = 16

dcOrientation = 17

dcCopies = 18

End Enum

Private Declare Function RegCloseKey Lib "advapi32.dll" (ByVal lngHKey As Long)

As Long

Private Declare Function RegCreateKeyEx Lib "advapi32.dll" Alias

"RegCreateKeyExA" (ByVal lngHKey As Long, ByVal lpSubKey As String, ByVal

Reserved As Long, ByVal lpClass As String, ByVal dwOptions As Long, ByVal

samDesired As Long, ByVal lpSecurityAttributes As Long, phkResult As Long,

lpdwDisposition As Long) As Long

Private Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias "RegOpenKeyExA"

(ByVal lngHKey As Long, ByVal lpSubKey As String, ByVal ulOptions As Long, ByVal

samDesired As Long, phkResult As Long) As Long

Private Declare Function RegQueryValueExA Lib "advapi32.dll" (ByVal lngHKey As

Long, ByVal lpValueName As String, ByVal lpReserved As Long, lpType As Long,

ByVal lpData As Long, lpcbData As Long) As Long

Private Declare Function RegQueryValueExLong Lib "advapi32.dll" Alias

"RegQueryValueExA" (ByVal lngHKey As Long, ByVal lpValueName As String, ByVal

lpReserved As Long, lpType As Long, lpData As Long, lpcbData As Long) As Long

Private Declare Function RegQueryValueExString Lib "advapi32.dll" Alias

"RegQueryValueExA" (ByVal lngHKey As Long, ByVal lpValueName As String, ByVal

lpReserved As Long, lpType As Long, ByVal lpData As String, lpcbData As Long) As

Long

Private Declare Function RegSetValueExLong Lib "advapi32.dll" Alias

"RegSetValueExA" (ByVal lngHKey As Long, ByVal lpValueName As String, ByVal

Reserved As Long, ByVal dwType As Long, lpValue As Long, ByVal cbData As Long)

As Long

Private Declare Function RegSetValueExString Lib "advapi32.dll" Alias

"RegSetValueExA" (ByVal lngHKey As Long, ByVal lpValueName As String, ByVal

Reserved As Long, ByVal dwType As Long, ByVal lpValue As String, ByVal cbData As

Long) As Long

'Private Const mRegHKeyClassesRoot = &H80000000

'Private Const mRegHKeyLocalMachine = &H80000002

Private Const mRegHKeyCurrentUser = &H80000001

Private Const mPdfWriterKeyName = "Software\Adobe\Acrobat PDFWriter"

Private Const mRegOptionNonVolatile = 0

Private Const mRregKeyAllAccess = &H3F

Private Const mRegSz As Long = 1

Private Const mRegDWord As Long = 4

Private Const mRegKeyQueryValue = &H1

'

Private Sub Class_Initialize()

callStackPush mModuleName, "Class_Initialize"

On Error GoTo catchError

' PURPOSE: - To populate the class's collection of all printers on this PC

' - To make sure we have at least one printer installed

' - To set any default values for properties

'

' NOTES: 1) The assumption is that if there is no default printer, no printers

are installed.

printerArrayLoad

mCurView = rpViewNormal

mCurPdfDir = extractDirFromFullPath(Application.CurrentDb.Name)

mCurPrinterName = printerDefaultGet.DeviceName

mCurGetPdfFileNameFrom = rpGetFromReportCaption

If Len(mCurPrinterName) = 0 Then

errorListAdd "No printer is installed on this PC. Cannot print until at

least one printer is installed."

Else

With mCurDevMode

.intCollate = rpCollate_False

.intCopies = 1

.intColor = rpColor_Monochrome

.intDefaultSource = rpSrc_Auto

.intDuplex = rpDuplex_Simplex

.intOrientation = rporient_Portrait

.intPaperSize = rpPaper_Letter

.intPrintQuality = rpQual_High

End With

End If

Xit:

callStackPop

On Error Resume Next

Exit Sub

catchError:

errorLogWrite ""

Resume Xit

End Sub

Public Property Get ErrorCount() As Long

callStackPush mModuleName, "ErrorCount"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to check for errors.

' RETURNS: Count of errors

ErrorCount = mCurErrorCount

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Get ErrorList() As String

callStackPush mModuleName, "ErrorList"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to display error messages

' RETURNS: Error messages

ErrorList = mCurErrorList

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let GetPdfFileNameFrom(ByVal theValue As rpGetPdfFileNameFrom)

callStackPush mModuleName, "GetPdfFileNameFrom"

On Error GoTo catchError

' PURPOSE: To allow the calling routine to specify whether to use

' report's .Caption or object name when creating PDF file name.

mCurGetPdfFileNameFrom = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let ReportName(ByVal theValue As String)

callStackPush mModuleName, "ReportName"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to set the name of the report to be

printed

' ACCEPTS: Name of the Report

mCurReportName = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let PdfDir(ByRef theValue As String)

callStackPush mModuleName, "PdfDir"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to set the class' PDF directory

' ACCEPTS: String specifying full path to which any .PDF file should be

' written. Does *not* contain file name. e.g. C:\TEMP

mCurPdfDir = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let ReportFileNamePrefix(ByRef theValue As String)

callStackPush mModuleName, "ReportFileNamePrefix"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to supply a string to be appended before

' each report's PDF file name

' ACCEPTS: String specifying the prefix

mCurReportFileNamePrefix = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let ReportFileNameSuffix(ByRef theValue As String)

callStackPush mModuleName, "ReportFileNameSuffix"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to supply a string to be appended after

' each report's PDF file name

' ACCEPTS: String specifying the suffix

mCurReportFileNameSuffix = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let PrinterName(ByRef theValue As String)

callStackPush mModuleName, "PrinterName"

On Error GoTo catchError

' PURPOSE: - To allow the using routine to set the class' Printer object

' ACCEPTS: String specifying UNC of printer. e.g. \\NTPRT41\INVHP5SI

mCurPrinterName = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Sub PrintReport()

6000 callStackPush mModuleName, "PrintReport"

6001 On Error GoTo catchError

' PURPOSE: - To allow the using routine to print the report

' - To validate all propreties before attempting to print

' SETS: - mCurErrorCount (via 'errorListAdd')

' - mCurErrorList (via 'errorListAdd')

'

' NOTES: 1) We validate parameters in three places, using mCurErrorCount to

' check after each validation:

' - In this routine

' - In validatePrinterPropsAndCapabilities()

' - In pdfRegistrySet()

' 2) There are no "Warning" errors. Every error is fatal.

' We do not print unless there are zero errors.

' 3) We keep checking mCurErrorCount because once certain errors

occur,

' we do not want to keep checking. e.g. Not having any printer

installed

' on the PC would pretty much defeat the rest of the checking.

' 4) BEWARE of the .ECHO situation.

' You will need to rem out the DoCmd.Echo False when debugging.

We use

' it when opening the report in 'Design' mode prior to modifying

it's

' print characteristics. .Echo False is not essential to run,

but

' True causes unsightly screen flickering.

'

6002 Dim myReport As Report

Dim myPrinter As mPrinterStruct

Dim myDevModeStruct As mPrtDevModeStruct

Dim myByteArray() As Byte

Dim myGotPdf As Boolean

Dim myPdfFileName As String

Dim myPdfRegistryInfo As String

Const noSuchReport = 2103

6010 If Len(mCurErrorLogPath) > 0 Then 'This should never happen because we

default the path to application's directory

6011 If validateErrorFilePath(mCurErrorLogPath) = False Then

6012 errorListAdd ".ErrorLogPath: Unable to create the error log file

using path specified. Could one or more of the path's directories be missing?

Path specified = '" & mCurErrorLogPath & "'."

6013 End If

6019 End If

6020 If Len(mCurPrinterName) > 0 Then

6021 myPrinter = printerGet(mCurPrinterName)

6022 If Len(myPrinter.DeviceName) & "" = 0 Then

6023 errorListAdd ".PrinterName: Printer '" & mCurPrinterName & "' is not

installed on this PC.'"

6024 Else

6025 validatePrinterPropsAndCapabilities myPrinter

6026 End If

6029 Else 'we probably shouldn't get this far

with no printer name, but might as well CYA...

6030 errorListAdd ".PrinterName: Blank printer name specified. If you

specify a printer name, it must be the name of a printer installed on this PC."

6039 End If

6040 If mCurErrorCount = 0 Then

6041 If Len(mCurReportName) = 0 Then

6042 errorListAdd ".ReportName: PROGRAM ERROR. No report name found."

6043 errorLogWrite "No report name found. We should not have gotten this

far with this condition present."

6044 Else

6045 On Error Resume Next

6046 With DoCmd

6047 .Close acReport, mCurReportName, acSaveNo

6048 .Echo False

6049 .OpenReport mCurReportName, acViewDesign

6050 End With

6200 Select Case Err

Case 0

6202 Set myReport = Reports(mCurReportName)

6203 If Len(mCurFilter & "") > 0 Then

6204 With myReport

6205 .Filter = mCurFilter

6206 .FilterOn = True

6207 End With

6208 End If

6209 Case noSuchReport

6210 errorListAdd ".ReportName: There is no such report as '" &

mCurReportName & " in this MS Access DB'."

6211 Case Else

6212 errorLogWrite ""

6213 End Select

6214 End If

6219 End If

6230 Select Case mCurView

Case acViewNormal, acViewPreview

'(a-ok, do nothing)

6232 Case Else

6233 errorListAdd ".View: Value passed = " & Format$(mCurView & "", "#") &

". Values allowed are: " & Format$(acViewNormal, "#") & " = Normal, " &

Format$(acViewPreview, "#") & " = Preview"

6239 End Select

' -----------------------------------

' Get the specified printer's PrtDevMode,

' modify it in accordance with properties specified by caller,

' and then copy it over the report's PrtDevMode

6410 If mCurErrorCount = 0 Then

6411 myDevModeStruct = printerDevModeGet(mCurPrinterName)

6412 With myDevModeStruct

6413 .intCollate = mCurDevMode.intCollate

6414 .intColor = mCurDevMode.intColor

6415 .intCopies = mCurDevMode.intCopies

6416 .intDuplex = mCurDevMode.intDuplex

6417 .intOrientation = mCurDevMode.intOrientation

6418 .intPaperLength = mCurDevMode.intPaperLength

6419 .intPaperSize = mCurDevMode.intPaperSize

6430 .intPaperWidth = mCurDevMode.intPaperWidth

6431 .intPrintQuality = mCurDevMode.intPrintQuality

6432 .intScale = mCurDevMode.intScale

6433 .intTTOption = mCurDevMode.intTTOption

6434 .intYResolution = mCurDevMode.intYResolution

6435 .lngFields = mCurDevMode.lngFields

6436 End With

6437 myByteArray = devModeToBytes(myDevModeStruct)

6438 myReport.PrtDevMode = myByteArray

6499 End If

' -----------------------------------

' Create a PrtDevNames struct that looks the same

' as the printer's and then overlay the report's

' with it

6600 If mCurErrorCount = 0 Then

6601 myByteArray = devNamesInfoBuildForPrinter(myPrinter)

6602 myReport.PrtDevNames = myByteArray

6609 End If

' -----------------------------------

' If we are sending to .PDF, generate file name and set registry

6800 If mCurErrorCount = 0 Then

6801 If Left(myPrinter.DeviceName, Len(mCurPrinterName)) = mPdfPrinterName

Then

6802 myGotPdf = True

6803 If Not pdfWriterInstalled() Then

6804 errorListAdd "PDF Writer Not Installed: 'Acrobat PDF Writer' print

driver not found on this PC. Just the reader or a LAN connection to another

PC's writer is not enough. This PC must have a full Acrobat install including

PDF Writer."

6805 Else

6806 If Len(mCurPdfDir) & "" = 0 Then

6807 errorListAdd ".PdfDir: When printing to PDF Writer, you must

specify an existing directory into which the .PDF files will be written. e.g.

..PdfDir='C:\TEMP'."

6808 Else

6809 If dirExist(mCurPdfDir) = False Then

6820 errorListAdd ".PdfDir: Directory '" & mCurPdfDir & "' not

found. Create it or specify a different directory. Be sure to specify ONLY a

directory, NOT including a file name. File name(s) will be created from

report's object name or .Caption."

6821 Else

6822 myPdfFileName = pdfFileNameCreate(mCurGetPdfFileNameFrom,

mCurReportFileNamePrefix, mCurReportFileNameSuffix, myReport)

6823 If mCurErrorCount = 0 Then

6824 If mCurShowPdfRegistryInfo = True Then

6825 myPdfRegistryInfo = String(40, "-") & vbCrLf & "Before

Setting Registry:" & vbCrLf & Space(15) & pdfRegistryGet()

6826 End If

6827 If pdfRegistrySet(myPdfFileName, mCurPdfDir) Then

6828 If mCurShowPdfRegistryInfo = True Then

6829 myPdfRegistryInfo = myPdfRegistryInfo & vbCrLf &

vbCrLf & String(40, "-") & vbCrLf & "After Setting Registry, But Before

Printing:" & vbCrLf & Space(15) & pdfRegistryGet()

6840 End If

6841 Else

6842 errorListAdd "Registry Permission Problem? Unable to

set registry entries for Adobe Acrobat PDF"

6843 End If

6844 End If

6845 End If

6846 End If

6847 End If

6848 End If

6899 End If

' -----------------------------------

' Print the report

6900 If mCurErrorCount = 0 Then

6901 If mCurView = acViewPreview Then 'Abandon everything

we've done to the report so far, and just open it fresh in preview mode

6902 With DoCmd

6903 .Close acReport, mCurReportName, acSaveNo

6904 .Echo True

6905 .SetWarnings True

6906 .OpenReport mCurReportName, acPreview, , mCurFilter

6907 End With

6908 Else

6909 With DoCmd

6910 .OpenReport mCurReportName, mCurView, , mCurFilter 'Filter was

set back when we opened it in Design mode

6911 .Echo True

6912 .Close acReport, mCurReportName, acSaveNo

6913 .SetWarnings True

6914 End With

6915 If myGotPdf = True Then

6916 If mCurShowPdfRegistryInfo = True Then

6917 myPdfRegistryInfo = myPdfRegistryInfo & vbCrLf & String(40,

"-") & vbCrLf & "After Printing:" & Space(5) & pdfRegistryGet()

6918 MsgBox myPdfRegistryInfo, vbInformation, "PDF-Related Registry

Settings"

6919 End If

6920 End If

6921 End If

6999 End If

Xit:

callStackPop

On Error Resume Next

With DoCmd

If mCurView <> acViewPreview Then

.Close acReport, mCurReportName, acSaveNo

End If

.Echo True

.SetWarnings True

End With

Set myReport = Nothing

Exit Sub

catchError:

With DoCmd

.Echo True

.SetWarnings True

End With

errorLogWrite ""

Resume Xit

End Sub

Public Property Let Collate(theValue As rpCollate)

callStackPush mModuleName, "Collate"

On Error GoTo catchError

mCurDevMode.intCollate = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Collate

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let Color(theValue As rpColor)

callStackPush mModuleName, "Color"

On Error GoTo catchError

mCurDevMode.intColor = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Color

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let Copies(theValue As Integer)

callStackPush mModuleName, "Copies"

On Error GoTo catchError

mCurDevMode.intCopies = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Copies

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let DefaultSource(theValue As rpDefaultSource)

callStackPush mModuleName, "DefaultSource"

On Error GoTo catchError

mCurDevMode.intDefaultSource = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_DefaultSource

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let Duplex(theValue As rpDuplex)

callStackPush mModuleName, "Duplex"

On Error GoTo catchError

mCurDevMode.intDuplex = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Duplex

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let ErrorLogPath(ByVal theValue As String)

callStackPush mModuleName, "ErrorLogPath"

On Error GoTo catchError

mCurErrorLogPath = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let Filter(theValue As String)

callStackPush mModuleName, "Filter"

On Error GoTo catchError

mCurFilter = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let LaunchAcrobat(theValue As Boolean)

callStackPush mModuleName, "LaunchAcrobat"

On Error GoTo catchError

mCurLaunchAcrobat = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let Orientation(theValue As rpOrientation)

callStackPush mModuleName, "Orientation"

On Error GoTo catchError

mCurDevMode.intOrientation = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Orientation

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

'Public Property Let PaperLength(theValue As Integer)

' mCurDevMode.intPaperLength = theValue

' mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_PaperLength

'End Property

Public Property Let PaperSize(theValue As rpPaperSize)

callStackPush mModuleName, "PaperSize"

On Error GoTo catchError

mCurDevMode.intPaperSize = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_PaperSize

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

'Public Property Let PaperWidth(theValue As Integer)

' mCurDevMode.intPaperWidth = theValue

' mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_PaperWidth

'End Property

Public Property Let PrintQuality(theValue As rpPrintQuality)

callStackPush mModuleName, "PrintQuality"

On Error GoTo catchError

mCurDevMode.intPrintQuality = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_PrintQuality

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

'Public Property Let ScaleAmount(theValue As Integer)

' mCurDevMode.intScale = theValue

' mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Scale

'End Property

Public Property Let ShowPdfRegistryInfo(theValue As Boolean)

callStackPush mModuleName, "ShowPdfRegistryInfo"

On Error GoTo catchError

mCurShowPdfRegistryInfo = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

'Public Property Let TrueTypeOption(theValue As rpTrueType)

' callStackPush mModuleName, "TrueTypeOption"

' On Error GoTo catchError

'

' mCurDevMode.intTTOption = theValue

' mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_T_Option

'

'Xit:

' callStackPop

' On Error Resume Next

' Exit Property

'

'catchError:

' errorLogWrite ""

' Resume Xit

'End Property

Public Property Let View(theValue As rpView)

callStackPush mModuleName, "View"

On Error GoTo catchError

mCurView = theValue

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Property Let YResolution(theValue As Integer)

callStackPush mModuleName, "YResolution"

On Error GoTo catchError

mCurDevMode.intYResolution = theValue

mCurDevMode.lngFields = mCurDevMode.lngFields Or rp_Y_Resolution

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Public Function legalFileName(ByVal theName As String) As String

callStackPush mModuleName, "legalFileName"

On Error GoTo catchError

' PURPOSE: To convert a string into something that can function as

' part of a DOS file name

' ACCEPTS: The string to be converted

' RETURNS: A string with any illegal characters replaced with underscores

'

' NOTES: 1) We originally decided which chars to replace by trying to

' rename a file to something containing "?"(which we knew was

' illegal) and then noting the other illegal chars described

' in the error message.

Dim badBoyz() As Variant

Dim L As Long

Dim i As Integer

Dim isDone As Boolean

Dim myName As String

Dim arraySize As Integer

Const underScore = "_"

myName = theName

badBoyz = Array("/", "\", ":", "*", "?", Chr$(34), "<", ">", "|")

arraySize = UBound(badBoyz)

For i = 0 To arraySize

isDone = False

Do Until isDone = True

L = InStr(1, myName, badBoyz(i))

If L = 0 Then

isDone = True

Else

Mid$(myName, L, 1) = underScore

End If

Loop

Next i

legalFileName = myName

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function pdfWriterInstalled() As Boolean

callStackPush mModuleName, "pdfWriterInstalled"

On Error GoTo catchError

' PURPOSE: To determine whether-or-not the Adobe Acrobat PDFWriter

' is installed on an NT 4.0 or later machine.

'

' RETURNS: True if installed, False if not

Dim hPrinter As Long

If OpenPrinter(mPdfPrinterName, hPrinter, 0) Then

ClosePrinter (hPrinter)

pdfWriterInstalled = True

End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Public Function dirExist(ByVal theDirPath As Variant) As String

callStackPush mModuleName, "dirExist"

On Error GoTo catchError

' PURPOSE: To determine whether-or-not a directory exists

' ACCEPTS: A path to the directory in question

' RETURNS: Empty string if directory exists, else a message telling why not

found.

Dim skipLine As String

dirExist = (Dir$(theDirPath, vbDirectory) <> "")

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

Select Case Err

Case 71

MsgBox "That path refers to a floppy disk. Please insert the disk.", 49,

"Insert Disk"

Case 76

'(We expect 76 if no file found)

Case 68

errorListAdd "Bad Directory. The system has reported that drive " &

UCase$(Left$(theDirPath, 2)) & " is unavailable."

Case Else

errorLogWrite "Unexpected case"

End Select

Resume Xit

End Function

Private Sub errorListAdd(ByVal theMessage As String)

On Error GoTo catchError

' PURPOSE: To add an error to mCurErrorList and increment the error count

' ACCEPTS: The error message to add

'

' NOTES: 1) Limited error trapping because we are already in an error

' situation and want to avoid any chance of a loop

mCurErrorCount = mCurErrorCount + 1

If Len(mCurErrorList) = 0 Then

mCurErrorList = "clsReportPrinter, version " & mVersionNumber & vbCrLf &

vbCrLf & mErrorListMessagePrefix & theMessage

Else

mCurErrorList = mCurErrorList & vbCrLf & mErrorListMessagePrefix &

theMessage

End If

Xit:

On Error Resume Next

Exit Sub

catchError:

MsgBox "clsReportPrinter: runtime error in errorListAdd()"

Resume Xit

End Sub

Private Function printerDevModeGet(ByVal thePrinterName As String) As

mPrtDevModeStruct

callStackPush mModuleName, "printerDevModeGet"

On Error GoTo catchError

' PURPOSE: To retrieve the PrtDevMode structure for the named printer

' ACCEPTS: Printer name (e.g. \\NTPRT41\INVHP5SI)

' RETURNS: Printer's DevMode structure

Dim myDevModeStruct As mPrtDevModeStruct

Dim myDevModeBytes() As Byte

Dim myDevModeLen As Long

Dim hPrinter As Long

Dim myDummyByte As Byte

Const myBufLen = 2

On Error GoTo catchError

If OpenPrinter(thePrinterName, hPrinter, 0) Then

If hPrinter > 0 Then

myDevModeLen = DocumentProperties(0, hPrinter, thePrinterName,

myDummyByte, myDummyByte, 0)

If myDevModeLen > 0 Then

ReDim myDevModeBytes(1 To myDevModeLen)

If DocumentProperties(0, hPrinter, thePrinterName, myDevModeBytes(1),

myDevModeBytes(1), myBufLen) > 0 Then

myDevModeStruct = bytesToDevMode(myDevModeBytes)

printerDevModeGet = myDevModeStruct

End If

End If

End If

Call ClosePrinter(hPrinter)

End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function bytesToDevMode(ByRef theByteArray() As Byte) As

mPrtDevModeStruct

callStackPush mModuleName, "bytesToDevMode"

On Error GoTo catchError

' PURPOSE: To convert an array of Byte into a PrtDevMode structure

' ACCEPTS: An array of Byte

' RETURNS: A DevMode structure containing same info as passed byte array

Dim myDevModeStruct As mPrtDevModeStruct

Dim myDevModeString As mDevModeStringStruct

myDevModeString.strDevMode = theByteArray

LSet myDevModeStruct = myDevModeString

bytesToDevMode = myDevModeStruct

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function devModeToBytes(ByRef theDevMode As mPrtDevModeStruct) As Byte()

callStackPush mModuleName, "devModeToBytes"

On Error GoTo catchError

' PURPOSE: To comvert a PrtDevMode structure into an array of Byte

' ACCEPTS: Pointer to the struct in question

' RETURNS: An array of Byte containing same info as in passed structure

'

' NOTES: 1) Apparently there can be some extra characters on the end of

' the intermediate string we create, hence the need to trim it

' via LeftB()

Dim myByteArray() As Byte

Dim myDevModeString As mDevModeStringStruct

LSet myDevModeString = theDevMode

myByteArray = LeftB(myDevModeString.strDevMode, theDevMode.intSize +

theDevMode.intDriverExtra)

devModeToBytes = myByteArray

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function uniToAnsi(strUni As String) As Variant

callStackPush mModuleName, "uniToAnsi"

On Error GoTo catchError

' PURPOSE: To convert a Unicode string to ANSI.

' ACCEPTS: UniCode string

' RETURNS: ANSI string

'

' NOTES: 1)We must return a Variant, or VBA will convert

' it back to Unicode for you - just as a favor...

uniToAnsi = StrConv(strUni, vbFromUnicode)

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function devNamesInfoBuildForPrinter(ByRef thePrinter As mPrinterStruct)

As Byte()

4000 callStackPush mModuleName, "devNamesInfoBuildForPrinter"

4001 On Error GoTo catchError

' PURPOSE: Create a PrtDevNames structure for a given printer

' ACCEPTS: Structure containing information for the printer in question

' RETURNS: Byte array containing info needed to create a PrtDevNames

structure

4002 Dim myDNOI As mDevNamesOffsetInfoStruct

Dim myOffsetString As mDevNamesOffsetStringStruct

Dim myDefaultPrinter As mPrinterStruct

Dim myBytes As Variant

' 4003 DoCmd.OpenReport ("Bogus") 'For use when debugging the error

handling routines

' ---

' Check for maximum length for the device name

' (leaving room for the null terminator)

4011 If Len(thePrinter.DeviceName) > adhcMaxDevice - 1 Then

4012 thePrinter.DeviceName = Left$(thePrinter.DeviceName, adhcMaxDevice - 1)

4019 End If

' ---

' The first offset is always offset 8

4020 With myDNOI

4021 .DriverOffset = adhcDevNamesFixed

4022 .DeviceOffset = .DriverOffset + Len(thePrinter.DriverName) + 1

4023 .OutputOffset = .DeviceOffset + Len(thePrinter.DeviceName) + 1

4024 .IsDefaultPrinter = thePrinter.IsDefaultPrinter

4029 End With

' ---

' If all the information in thePrinter matches the current

' default printer, then set Default to be 1.

4030 myDefaultPrinter = printerDefaultGet

4031 With myDefaultPrinter

4032 If (.DeviceName = thePrinter.DeviceName) And (.DriverName =

thePrinter.DriverName) And .Port = thePrinter.Port Then

4033 myDNOI.IsDefaultPrinter = 1

4034 End If

4039 End With

' ---

4041 LSet myOffsetString = myDNOI

4042 myBytes = myOffsetString.strDevInfo

4049 myBytes = myBytes & uniToAnsi(thePrinter.DriverName) & ChrB$(0) &

uniToAnsi(thePrinter.DeviceName) & ChrB$(0) & uniToAnsi(thePrinter.Port) &

ChrB$(0)

4999 devNamesInfoBuildForPrinter = myBytes

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function regKeyValueSet(ByVal theRootKey As Long, ByVal theKeyName As

String, ByVal theValueName As String, ByVal theValueData As Variant, ByVal

theValueType As Long, ByRef theErrorMessage As String) As Boolean

callStackPush mModuleName, "regKeyValueSet"

On Error GoTo catchError

' ACCEPTS: - Root key value

' - Name of the key to open

' - Name of the value to open, vbNullString will open the default

value

' - Data to assign to the value

' - Data type of the value

' RETURNS: TRUE or FALSE depending on success

' SETS: - Error message in event of problem

Dim x As Long

Dim myKeyHandle As Long

x = RegCreateKeyEx(theRootKey, theKeyName, 0&, vbNullString,

mRegOptionNonVolatile, mRregKeyAllAccess, 0&, myKeyHandle, 0&)

If x <> 0 Then

theErrorMessage = "[ERROR: " & Str(x) & " returned by RegCreateKeyEx."

Else

Select Case theValueType

Case mRegSz

x = RegSetValueExString(myKeyHandle, theValueName, 0&, theValueType,

theValueData, Len(theValueData))

If x <> 0 Then

theErrorMessage = "[ERROR: " & Str(x) & " returned by

RegSetValueExString."

Else

regKeyValueSet = True

End If

Case mRegDWord

x = RegSetValueExLong(myKeyHandle, theValueName, 0&, theValueType,

theValueData, mRegDWord)

If x <> 0 Then

theErrorMessage = "[ERROR: " & Str(x) & " returned by

RegSetValueExLong."

Else

regKeyValueSet = True

End If

End Select

End If

Xit:

callStackPop

On Error Resume Next

RegCloseKey (myKeyHandle)

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function pdfRegistrySet(ByVal thePdfFileNameRaw As Variant, ByVal

theOutputDir As Variant) As Boolean

3000 callStackPush mModuleName, "pdfRegistrySet"

3001 On Error GoTo catchError

' PURPOSE: To set the registry values needed by PDFWriter to create a .PDF

file

' without issuing a common file dialog to the user.

' ACCEPTS: - Caption or MS Access object name of the report it is going to

create

' a .PDF file for

' - A path to the directory where the .PDF file will be wirtten.

' (Does *not* include file name. We develop that from the caption

or object name.)

' USES: mCurDevMode to get:

' - The paper size it should use (expressed as Enum rpPaperSize

' constants and then translated by this routine into Acrobat

constants)

' - The orientation on that paper)expressed as Enum rpOrientation

constants

' and translated....)

' - A pointer to the report in question, so we can set it's

..SpecificPrinter

' before turning PDFWriter loose on it.

'

' RETURNS: True or False depending on success

' SETS: Acrobat registry entries for

' - Paper size

' - Paper orientation

' - Path where .PDF will be written

'

' NOTES: 1) Windows PrdDevName constants for paper size and orientation

differ from

' Adobe's, so we have to translate them.

' 2) The calling routine is responsible for supplying a valid

existing

' directory path *WITHOUT* file name.

' 3) If a paper size that Adobe can't handle is passed, we just set

paper size

' to Tabloid since that's the biggest.

' 4) Ditto orientation...we force LandScape if something besides

' portrait or landscape comes through

3002 Dim myOutputDir As String

Dim myPdfFileName As String

Dim myPdfFilePath As String

Dim myAcrobatPaperSize As String

Dim myAcrobatOrientation As String

Dim myValueName As String

Dim myValueData As String

Dim myErrorMessage As String

Const myDelim = ", "

3010 myValueName = "bExecViewer"

3011 If (mCurLaunchAcrobat <> 0) And (mCurLaunchAcrobat <> -1) Then

3012 errorListAdd ".LaunchAcrobat: Values allowed: True (i.e. -1) or

False (i.e. 0). Value passed = " & Format$(mCurLaunchAcrobat & "", "0#") & ".

"

3013 Else

3014 If mCurLaunchAcrobat = True Then

3015 myValueData = "1"

3016 Else

3017 myValueData = "0" 'Do not launch Acrobat when we

create the .PDF file

3019 End If

3020 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3029 End If

3160 myPdfFileName = legalFileName(thePdfFileNameRaw)

3170 myPdfFilePath = theOutputDir & "\" & myPdfFileName & ".pdf"

3200 Select Case mCurDevMode.intOrientation

Case rporient_Portrait

3211 myAcrobatOrientation = "1"

3220 Case rporient_landscape

3221 myAcrobatOrientation = "2"

3230 Case Else

3231 errorLogWrite "Unexpected case = " & Str(mCurDevMode.intOrientation)

& ". Invalid orientation should have been caught in

validatePrinterPropsAndCapabilities()."

3299 End Select

3300 Select Case mCurDevMode.intPaperSize

Case rpPaper_Letter

3319 myAcrobatPaperSize = "0"

3320 Case rpPaper_Legal

3329 myAcrobatPaperSize = "1"

3330 Case rpPaper_Tabloid

3339 myAcrobatPaperSize = "2"

3340 Case rpPaper_A4, rpPaper_A4_Small

3349 myAcrobatPaperSize = "3"

3350 Case rpPAPER_A3

3359 myAcrobatPaperSize = "4"

3360 Case rpPaper_Executive

3369 myAcrobatPaperSize = "5"

3370 Case rpPaper_B4

3379 myAcrobatPaperSize = "6"

3380 Case rpPaper_B5

3389 myAcrobatPaperSize = "7"

3490 Case Else

3499 errorListAdd ".PaperSize: Values allowed with PDF Writer are: " _

& Format$(rpPaper_Letter, "0#") & " = Letter" _

& myDelim & Format$(rpPaper_Legal, "0#") & " = Legal" _

& myDelim & Format$(rpPaper_Tabloid, "0#") & " =

Tabloid" _

& myDelim & Format$(rpPaper_Executive, "0#") & " =

Executive" _

& myDelim & Format$(rpPAPER_A3, "0#") & " = A3" _

& myDelim & Format$(rpPaper_A4, "0#") & " = A4" _

& myDelim & Format$(rpPaper_A4_Small, "0#") & " = A4

Small" _

& myDelim & Format$(rpPaper_B4, "0#") & " = B4" _

& myDelim & Format$(rpPaper_B5, "0#") & " = B5" _

& myDelim & " Value specified = " &

Format$(mCurDevMode.intPaperSize & "", "0#") & "."

3500 End Select

2599 pdfRegistrySet = True 'We don't want to

return False if the only problem is validation

3700 If (Len(myAcrobatOrientation) > 0) And (Len(myAcrobatPaperSize) > 0) Then

3701 pdfRegistrySet = False

3710 myValueName = "PDFFileName"

3711 myValueData = myPdfFilePath

3712 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3720 myValueName = "paper"

3721 myValueData = myAcrobatPaperSize

3722 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3730 myValueName = "orient"

3731 myValueData = myAcrobatOrientation

3732 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3740 myValueName = "bDocInfo"

3741 myValueData = "0"

3742 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3745 myValueName = "bEmbedAllFonts"

3746 myValueData = "0"

3747 regKeyValueSet mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName,

myValueData, mRegSz, myErrorMessage

3750 pdfRegistrySet = True

3999 End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite "Raw PDF FileName = '" & thePdfFileNameRaw & ", Papersize=" &

Str(mCurDevMode.intPaperSize) & ", Orientation=" &

Str(mCurDevMode.intOrientation) & ", Output Dir='" & theOutputDir & "', Path =

'" & myPdfFilePath & "',"

Resume Xit

End Function

Private Function regKeyValueGet(ByVal theRootKey As Long, ByVal theKeyName As

String, ByVal theValueName As String, ByRef theReturnValue As Variant) As

Boolean

2000 callStackPush mModuleName, "regKeyValueGet"

2001 On Error GoTo catchError

' ACCEPTS: - The root key value, which must be one of the following

constants:

' + gRegHKeyClassesRoot

' + gRegHKeyCurrentUser

' + gRegHKeyLocalMachine

' + gRegHKeyUsers

' - Name of the key to open

' - Name of the value to open. "vbNullString" will open the

default value.

' RETURNS: TRUE or FALSE depending on success

' SETS: Variant containing the registry value's data or an error message

'

' EXAMPLE: x = regKeyValueGet(gRegHKeyLocalMachine,

"Software\ODBC\ODBC.INI\AGENCY", "ServerName", myValueData)

2010 Dim myKeyHandle As Long

Dim myStringValue As String

Dim myLongValue As Long

Dim myValueType As Long

Dim myDataLength As Long

Dim x As Long

2020 theReturnValue = Empty

2030 x = RegOpenKeyEx(theRootKey, theKeyName, 0&, mRegKeyQueryValue,

myKeyHandle)

2040 If x <> 0 Then

2050 theReturnValue = "[ERROR " & Str(x) & " returned by RegOpenKeyEx]"

2060 Else

2070 x = RegQueryValueExA(myKeyHandle, theValueName, 0&, myValueType, 0&,

myDataLength)

2080 If x <> 0 Then

2090 If x = 2 Then

2100 theReturnValue = "[ERROR " & Str(x) & ": key not

found....Returned by RegQueryValueExA]"

2110 Else

2120 theReturnValue = "[ERROR " & Str(x) & " returned by

RegQueryValueExA]"

2130 End If

2140 Else

2141 If myDataLength > 0 Then

2150 Select Case myValueType

Case mRegSz: ' String

2170 myStringValue = String(myDataLength - 1, 0)

2180 x = RegQueryValueExString(myKeyHandle, theValueName, 0&,

myValueType, myStringValue, myDataLength)

2190 If x <> 0 Then

2200 theReturnValue = "[ERROR " & Str(x) & " returned by

RegQueryValueExString]"

2210 Else

2220 theReturnValue = Left$(myStringValue, myDataLength)

2230 regKeyValueGet = True

2240 End If

2250 Case mRegDWord: ' Long

x = RegQueryValueExLong(myKeyHandle, theValueName, 0&,

myValueType, myLongValue, myDataLength)

2260 If x <> 0 Then

2270 regKeyValueGet = "[ERROR " & Str(x) & " returned by

RegQueryValueExLong]"

2280 Else

2290 theReturnValue = myLongValue

2300 regKeyValueGet = True

2310 End If

2320 Case Else ' No other

data types supported

2321 errorLogWrite "Unexpected case: " & Str(myValueType) & ".

Only String and Long supported"

2330 End Select

2335 End If

2340 End If

2999 End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function pdfRegistryGet() As String

callStackPush mModuleName, "pdfRegistryGet"

On Error GoTo catchError

' PURPOSE: To assist debugging by retrieving all the PDF-specific registry

entires.

' RETURNS: Registry Entries

Dim myString As String

Dim myValue1 As String

Dim myValue2 As String

Dim myValue3 As String

Const myValueName1 = "bDocInfo"

Const myValueName2 = "PDFFileName"

Const myValueName3 = "TPDFFileName"

If regKeyValueGet(mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName1,

myValue1) = False Then

myValue1 = "(key not found in registry)"

End If

If regKeyValueGet(mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName2,

myValue2) = False Then

myValue2 = "(key not found in registry)"

End If

If regKeyValueGet(mRegHKeyCurrentUser, mPdfWriterKeyName, myValueName3,

myValue3) = False Then

myValue3 = "(key not found in registry)"

End If

myString = myValueName1 & " = '" & myValue1 & "'" & vbCrLf & myValueName2 & "

= '" & myValue2 & "'" & vbCrLf & myValueName3 & " = '" & myValue3 & "'"

pdfRegistryGet = myString

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Sub printerArrayLoad()

callStackPush mModuleName, "printerArrayLoad"

On Error GoTo catchError

' PURPOSE: To load the class' array with all printers currently installed on

' this PC by referring to (the [devices] section in WIN.INI???)

' RETURNS: A collection as above

'

' NOTES: 1) I'm not positive that we're not going to the registry

' 1) When we loop through the list of printers, we assume that

' no two printers have the same name.

' 2 A given INI/Registry entry for a printer will look like this:

' "HP DeskJet 890C Series=winspool,LPT1:"

' so we split it twice: first on "=" and then we split the

' result of the "=" split on ",".

Dim myIniSectionArray() As String

Dim myIniDetailsArray1() As String

Dim myIniDetailsArray2() As String

Dim i As Integer

Dim k As Integer

Dim myParmCount As Integer

Dim myIniSection As String

myIniSection = iniSectionGet("Devices")

If Len(myIniSection) = 0 Then

myParmCount = 0

Else

myIniSectionArray = Split(myIniSection, vbNullChar)

ReDim aDevList(LBound(myIniSectionArray) To UBound(myIniSectionArray))

For i = LBound(myIniSectionArray) To UBound(myIniSectionArray)

If Len(myIniSectionArray(i)) > 0 Then

myIniDetailsArray1 = Split(myIniSectionArray(i), "=")

myIniDetailsArray2 = Split(myIniDetailsArray1(1), ",")

k = k + 1

ReDim Preserve mCurPrinters(k)

With mCurPrinters(k)

.DeviceName = myIniDetailsArray1(0)

.DriverName = myIniDetailsArray2(0)

.Port = myIniDetailsArray2(1)

End With

End If

Next i

End If

Xit:

callStackPop

On Error Resume Next

Exit Sub

catchError:

errorLogWrite ""

Resume Xit

End Sub

Private Function printerGet(ByVal thePrinterName As String) As mPrinterStruct

7000 callStackPush mModuleName, "printerGet"

7001 On Error GoTo catchError

' PURPOSE: To allow using routines to retrieve a named printer

' from the class' array

' ACCEPTS: UNC of the printer. e.g. \\NTPRT07\INVHP5SI

' RETURNS: Struct containing printer info: populated or empty, depending...

'

' NOTES: 1) There is no guarantee that the mCurPrinters has been loaded

because

' the PC may not have any printers installed. For want of a

better

' method, we detect this situation by trapping for a subscript

range error.

7002 Dim myPrinter As mPrinterStruct

Dim i As Integer

Dim gotPrinter As Boolean

Const subscriptOutOfRange = 9

7010 For i = 0 To UBound(mCurPrinters)

7020 With mCurPrinters(i)

7030 If .DeviceName = thePrinterName Then

7040 myPrinter.IsDefaultPrinter = .IsDefaultPrinter

7050 myPrinter.DeviceName = .DeviceName

7060 myPrinter.DriverName = .DriverName

7070 myPrinter.Port = .Port

7080 gotPrinter = True

7090 Exit For

7100 End If

7110 End With

7120 Next i

7999 printerGet = myPrinter

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

Select Case Err

Case subscriptOutOfRange

'(do nothing, indicates that no printers are installed)

Case Else

errorLogWrite ""

End Select

Resume Xit

End Function

Private Function printerDefaultGet() As mPrinterStruct

callStackPush mModuleName, "printerDefaultGet"

On Error GoTo catchError

' PURPOSE: Get information on the Windows default printer

' RETURNS: Structure

'

' NOTES: 1) The default printer name string has to contain

' three elements delimited by comma. If not, we

' have a trappable error

Dim myPrinter As mPrinterStruct

Dim myDetailsArray() As String

Dim strPrinter As String

strPrinter = printerDefaultInfoGet()

If Len(strPrinter) > 0 Then

myDetailsArray = Split(strPrinter, ",")

With myPrinter

.DeviceName = myDetailsArray(0)

.DriverName = myDetailsArray(1)

.Port = myDetailsArray(2)

End With

End If

printerDefaultGet = myPrinter

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function printerDefaultInfoGet() As String

callStackPush mModuleName, "printerDefaultInfoGet"

On Error GoTo catchError

' PURPOSE: To get the current default printer's information string

' RETURNS: String containing printer's information or, if no default printer,

empty string

Dim myBuff As String

Dim myBuffLen As Integer

Const myBuffLim = 2048

Const noPrintersFound = ""

myBuff = Space(myBuffLim)

myBuffLen = GetProfileString("Windows", "Device", noPrintersFound, myBuff,

myBuffLim - 1)

printerDefaultInfoGet = Left$(myBuff, myBuffLen)

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Public Property Get Help()

callStackPush mModuleName, "Help"

On Error GoTo catchError

' PURPOSE: - To act as a repository for documentation of this function's methods

and properties

' - To allow the calling routine to show same

MsgBox "This is a stub for yet-to-be-implemented 'Help' method." & vbCrLf &

vbCrLf & "The final product may document the class' methods and properties and

show some sample code by creating/opening an HTML document.", vbInformation,

"Under Construction"

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

Private Function iniSectionGet(ByVal theGroupRequested As String) As String

callStackPush mModuleName, "iniSectionGet"

On Error GoTo catchError

' PURPOSE: To retrieve an entire section from Win.INI.

' ACCEPTS: The name of the group we want to get

' RETURNS: A string containing the contents of the group (exclusive of header)

'

' NOTES: 1) Used to get a list of all the printers

' 2) CAVEAT: I suspect that the API call really goes to the

' registry, since I can't find a section in my own

' machine's WIN.INI that has printers in it.

Dim myBuff As String

Dim myBuffLen As Integer

Const myBuffLim = 10000

myBuff = Space(myBuffLim)

myBuffLen = GetProfileSection(theGroupRequested, myBuff, myBuffLim - 1)

iniSectionGet = Left$(myBuff, myBuffLen)

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Sub errorLogWrite(ByVal theSupplementalMessage As String)

' PURPOSE: - To write the passed information to the .ErrorList

' - To make the error bubble up to whatever client is using this

class.

' - If .ErrorLogPath specified, to write the information there,

otherwise write

' it to a default path.

'

' ACCEPTS: Programmer-supplied supplemental description

' USES: .ErrorLogPath property defining log file directory and file name

'

' NOTES: 1) First thing we have to do is capture all of the "real" error's

properties.

' 2) "noLocalError" is needed because we also might raise an error

in this routine (i.e. a "local"

' error).

' 3) We also post the error to the class' mCurErrorList so it will

affect the

' result of any attempt to do a .PrintReport. We do not call

errorListAdd()

' because we don't want to invoke it's error trapping - since it

would be

' recursive as we are already in error mode

' 4) If .ErrorLogPath has been specified, we have already validated

it before coming here.

' 5) The assumption is that drive C: exists.

1000 Dim myErl As Long

Dim myNumber As Long

Dim mySource As String

Dim myDescription As String

Dim myString As String

1040 myErl = Erl

1041 myNumber = Err.Number

1042 mySource = Err.Source

1049 myDescription = Err.description

1050 On Error GoTo errorLogWrite_xit

1051 DoCmd.Echo True 'In case it was turned off

somewhere else

1060 If myErl = 0 Then

1061 mySource = mySource & ":" & mCallStack(mCallStackPointer)

1062 Else

1063 mySource = mySource & ":" & mCallStack(mCallStackPointer) & ": Line# " &

Str(myErl)

1069 End If

1070 mCurErrorCount = mCurErrorCount + 1

1079 myString = mErrorListMessagePrefix & "RUN-TIME ERROR @" & mySource & " --

Error# " & Format$(myNumber, "0000") & ": " & myDescription & " " &

theSupplementalMessage

1080 If Len(mCurErrorList) = 0 Then

1081 mCurErrorList = myString

1082 Else

1083 mCurErrorList = mCurErrorList & vbCrLf & myString

1089 End If

1100 Dim i As Integer

1110 Dim x As Integer

1115 Dim noLocalError As Boolean

1120 Dim ErrorLogPath As String

1240 ErrorLogPath = errorLogPathGet()

1300 mySource = vbTab & "This error bubbled up from: " & mySource

1310 x = FreeFile

1320 Open ErrorLogPath For Append As x

1400 Print #x,

"--"

1410 Print #x, Format$("When: " & Now, "mm/dd/yy hh:nn:ss") & ", Who: " &

userNameGet() & ", What: " & computerNameGet() & ", Where: " &

mCallStack(mCallStackPointer)

1420 If myErl > 0 Then

1430 Print #x, String(13, " ") & "Line " & Format$(myErl, "000000") & " " &

Format$(myNumber, "0000") & ": " & myDescription

1440 Else

1450 Print #x, String(13, " ") & Format$(myNumber, "0000") & ": " &

myDescription

1460 End If

1470 If theSupplementalMessage <> "" Then

1480 Print #x, Space$(19) & theSupplementalMessage

1490 End If

1500 Print #x, ""

1600 If mCallStackPointer > 1 Then

1610 For i = 0 To mCallStackLim

1620 If mCallStack(i) <> "" Then

1630 If i = mCallStackPointer Then

1640 Print #x, Space$(9) & " " & Format(i, "00") & ">>" &

mCallStack(i)

1650 Else

1660 If i = 1 Then

1670 Print #x, Space$(9) & "CallOuts: " & Format(i, "00") & " "

& mCallStack(i)

1680 Else

1690 Print #x, Space$(9) & " " & Format(i, "00") & " "

& mCallStack(i)

1700 End If

1710 End If

1720 End If

1730 Next i

1740 End If

1900 Close #x

1999 noLocalError = True

errorLogWrite_xit:

If noLocalError = True Then

If myNumber = 0 Then

myNumber = 999 'In case we called errorLogWrite just for

informational purposes.

End If

' On Error Resume Next

Err.Raise myNumber, mySource & vbCrLf & vbTab & myDescription & vbCrLf &

vbTab & "This text is also logged in '" & ErrorLogPath & "'."

Else

Err.Raise Err.Number, Err.Source & ":" & "errorLogWrite, line " & Erl & "

(error in error handler)", Err.description

End If

Exit Sub

End Sub

Private Sub callStackPop()

' PURPOSE: To remove most-recently-added procedure name from the debug stack

array

On Error Resume Next 'To prevent looping if/when stack gets

overflowed...

mCallStack(mCallStackPointer) = ""

mCallStackPointer = mCallStackPointer - 1

If mCallStackPointer < 0 Then

mCallStackPointer = 0

End If

Exit Sub

End Sub

Private Sub callStackPush(ByVal theModuleName As String, ByVal theProcedureName

As String)

' PURPOSE: To add "theProcedureName" to the debug stack array

' NOTES: 1)If the programmer invokes this routine but neglects to invoke

"callStackPop"

' at the end of the procedure, there is a chance that the stack will

get

' overflowed. Therefore we have some error handling at the end to

track

' such situations. "overflowLogged" is a switch we use to prevent

an undue

' number of writes.

On Error GoTo callStackPush_err

Static overflowLogged As Boolean

mCallStackPointer = mCallStackPointer + 1

mCallStack(mCallStackPointer) = theModuleName & ":" & theProcedureName

callStackPush_xit:

Exit Sub

callStackPush_err:

If overflowLogged = False Then

errorLogWrite "Call Stack Overflow: Stack = " & Str(mCallStackPointer) & "

(Stack Limit = " & Str(mCallStackLim)

End If

overflowLogged = True

Resume callStackPush_xit

End Sub

Private Function userNameGet() As String

On Error Resume Next

' PURPOSE: To extract the LAN userID of the person currently logged on

' RETURNS: UserID or blank string

'

' NOTES: 1) NO ERROR TRAPPING. Tailored for use during errorLogWrite process.

' To avoid recursive loops, there are no calls to errorLogWrite

routines.

Dim L As Long

Dim myBuffer As String

Const buffLen = 255

myBuffer = Space(buffLen)

L = GetUserName(myBuffer, buffLen)

userNameGet = stripNulls_elw(myBuffer)

End Function

Private Function computerNameGet() As String

On Error Resume Next

' PURPOSE: To extract the name of the user's PC via Windows API

'

' NOTES: 1) NO ERROR TRAPPING. Tailored for use during errorLogWrite process.

' To avoid recursive loops, there are no calls to errorLogWrite

routines.

Dim L As Long

Dim myBuffer As String

Const buffLen = 255

myBuffer = Space(buffLen)

L = GetComputerName(myBuffer, buffLen)

computerNameGet = stripNulls_elw(myBuffer)

End Function

Private Function stripNulls_elw(ByVal theStringWithNulls As String) As String

On Error Resume Next

' PURPOSE: To strip any nulls out of the passed string

' ACCEPTS: The string we want to strip nulls out of

' RETURNS: A copy of the passed string with nulls stripped

'

' NOTES: 1) NO ERROR TRAPPING. Tailored for use during errorLogWrite

process. To avoid recursive loops,

' there are no calls to errorLogWrite routines.

Dim myString As String

If InStr(1, theStringWithNulls, Chr(0), vbTextCompare) Then

myString = Mid(theStringWithNulls, 1, InStr(theStringWithNulls, Chr(0)) -

1)

Else

myString = theStringWithNulls

End If

stripNulls_elw = myString

End Function

Private Function errorLogPathGet() As String

' PURPOSE: To build the path where we write our errors to

'

' NOTES: 1) NO ERROR TRAPPING. Tailored for use during errorLogWrite process.

' To avoid recursive loops, there are no calls to errorLogWrite

routines.

Dim myAppDir As String

Const defaultErrorLogName = "clsReportPrinter.ErrorLog.txt"

If Len(mCurErrorLogPath) = 0 Then

myAppDir = extractDirFromFullPath_elw(Application.CurrentDb.N ame)

errorLogPathGet = myAppDir & "\" & defaultErrorLogName

Else

errorLogPathGet = mCurErrorLogPath

End If

End Function

Function fileExist(ByVal theFilePath As Variant) As Integer

callStackPush mModuleName, "fileExist"

On Error GoTo catchError

' PURPOSE: To determine whether-or-not a file exists

' ACCEPTS: A full path to the file in question

' RETURNS: True or False depending...

'

' NOTES: 1) If we drop into the errro trap, not only does

' the file does not exist, but something unexpected

' has happened

fileExist = (Dir$(theFilePath) <> "")

fileExist_xit:

debugStackPop

On Error Resume Next

Exit Function

catchError:

Select Case Err

Case 71

'(Do nothing because we are not in a position to pop error messages)

' MsgBox "That path refers to a floppy disk. Please insert the disk.", 49,

"Insert Disk"

Case 76

'(We can expect 76 if no file found)

Case 68

'(Do nothing because we are not in a position to pop error messages)

' MsgBox "The system has reported that drive " & UCase$(Left$(theFilePath,

2)) & " is unavailable." & skipLine & "One possibility is that you specified the

wrong drive; another is that there is a problem with your LAN logon.", 16,

"Cannot find Drive"

Case Else

errorLogWrite "Unexpected error encountered when checking for existance of

a file."

End Select

Resume fileExist_xit

End Function

Private Function validateErrorFilePath(ByVal theFilePath As String) As Boolean

5000 callStackPush mModuleName, "validateErrorFilePath"

5001 On Error GoTo catchError

' PURPOSE: To validate the error log path by seeing if we can create a file.

'

' NOTES: 1) We cannot log an error message because the main use of this

routine

' is to validate the error log path. Instead, we append a message

' to .ErrorList.

' 2) We do the Dir$() without error trapping because it will generate

' an error 52 in addition to returning an empty string if we feed it

' a UNC with non-existant file name.

' 3) If we feed a path lacking either drive letter or server\sharename

' to "Open" it seems to handle it without error, but we can't figure

' out where the file was created.

' Therefore we check for a drive or UNC first.

5002 Dim x As Integer

Dim myErl As Long

Dim myNumber As Long

Dim mySource As String

Dim myDescription As String

Dim myString As String

Dim myReturnValue As String

Const pathNotFound = 76

Const badFileNameOrNumber = 52

Const pathFileAccessError = 75

5010 If (Mid$(theFilePath, 2, 1) = ":") Or (Left$(theFilePath, 2) = "\\") Then

On Error Resume Next

myReturnValue = Dir$(theFilePath)

On Error GoTo catchError

5020 If Len(myReturnValue) > 0 Then

5021 validateErrorFilePath = True

5029 Else

5030 x = FreeFile

5031 Open theFilePath For Append As x

5032 Close x

5033 Kill theFilePath

5039 validateErrorFilePath = True

598 End If

5999 End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

myErl = Erl

myNumber = Err.Number

mySource = Err.Source

myDescription = Err.description

On Error Resume Next

Select Case myNumber

Case pathNotFound, badFileNameOrNumber, pathFileAccessError

'(do nothing, these errors simply confirm that the path is bad)

Case Else

myString = "PROGRAM ERROR @" & mySource & " -- Error# " &

Format$(myNumber, "0000") & ": " & myDescription & "."

errorListAdd myString

End Select

Resume Xit

End Function

Private Function driverGetPointArray(ByVal theDeviceCapabilityType As

mDeviceCapabilityTypes, ByRef thePrinter As mPrinterStruct) As mXyPoint()

callStackPush mModuleName, "driverGetPointArray"

On Error GoTo catchError

' PURPOSE: To retrieve an array of x-y coordinates type values (each one is a

pair

' of integers) from a printer's driver

' ACCEPTS: - A constant telling what capability we are looking for. e.g.

Printer resolution

' - A printer struct containing name, port of printer

' RETURNS: An array of the coordinates found

'

' NOTES: 1) The DeviceCapabilities() API call returns -1 upon failure

Dim myPointList() As mXyPoint

Dim myListCount As Long

Dim L As Long

myListCount = DeviceCapabilitiesLng(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, 0, 0)

If myListCount = -1 Then

errorLogWrite "Unable to retrieve device capability count for type" &

Str(theDeviceCapabilityType)

Else

If myListCount > 0 Then

ReDim myPointList(0 To myListCount - 1)

L = DeviceCapabilitiesAny(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, myPointList(0), 0)

If L = -1 Then

errorLogWrite "Unable to retrieve device capability list for type" &

Str(theDeviceCapabilityType)

End If

End If

End If

driverGetPointArray = myPointList

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Sub validatePrinterPropsAndCapabilities(ByRef thePrinter As

mPrinterStruct)

callStackPush mModuleName, "validatePrinterPropsAndCapabilities"

On Error GoTo catchError

' PURPOSE: To check printer options supplied by caller against possible

capapbilities

' AND against capabilities supported by chosen printer

' ACCEPTS: Struct containing name, port of chosen printer

' SETS: - mCurErrorCount (incremented for each incompatibility found via

'errorListAdd')

' - mCurErrorList (an error description added for each incompatability

found via 'errorListAdd')

'

Dim myPrinterDm As mPrtDevModeStruct

Dim myPointArray() As mXyPoint

Dim myCurRez As mXyPoint

Dim myStringArray() As String

Dim myArraySize As Long

Dim capabilitySupported As Boolean

Dim valuesFound As String

Dim myMsg As String

Dim B As Boolean

Dim L As Long

Dim i As Integer

Const myIndent = 6

Const myDelim = ", "

myPrinterDm = printerDevModeGet(thePrinter.DeviceName)

With mCurDevMode

' ---

' Collate

Select Case .intCollate

Case rpCollate_False

'(do nothing)

Case rpCollate_True

If myPrinterDm.intCollate <> rpCollate_True Then

errorListAdd ".Collate: Collating requested, but printer " &

thePrinter.DeviceName & " does not support collating. Value specified = " &

Str(.intCollate) & ". "

End If

Case Else

errorListAdd ".Collate: Values allowed = " & Format$(rpCollate_True,

"#0") & " = True" & myDelim & Format$(rpCollate_False, "#0") & " = False.

Value specified = " & Str(.intCollate) & ". "

End Select

' ---

' Color

Select Case .intColor

Case rpColor_Monochrome

'(do nothing)

Case rpColor_Color

If myPrinterDm.intColor <> rpColor_Color Then

errorListAdd ".Color: Color printing requested, but printer " &

thePrinter.DeviceName & " does not support color printing."

End If

Case Else

errorListAdd ".Color: Values allowed = " & Format$(rpColor_Monochrome,

"#0") & " = Monochrome" & myDelim & Format$(rpColor_Color, "#0") & " = Color.

Value specified = " & Str(.intColor) & ". "

End Select

' ---

' Copies

L = driverGetNumericValue(dcCopies, thePrinter)

If L < .intCopies Then

errorListAdd ".Copies: Max copies allowed by printer " &

thePrinter.DeviceName & " = " & Format$(L, "#0") & ". Value specified = " &

Format$(.intCopies, "#0") & "."

End If

' ---

' DefaultSource NOT CHECKED AGAINST PRINTER CAPABILITIES

Select Case .intDefaultSource

Case rpSrc_Upper, rpSrc_OnlyOne, rpSrc_Lower, rpSrc_Middle,

rpSrc_Manual_Feed, rpSrc_Envelope, _

rpSrc_Envelope_Manual_Feed, rpSrc_Auto, rpSrc_Tractor,

rpSrc_Small_Format, rpSrc_Large_Format, _

rpSrc_Large_Capacity, rpSrc_Cassette, rpSrc_Form_Source, rpSrc_User

'(do nothing)

Case Else

errorListAdd ".DefaultSource: Values allowed = " & _

Format$(rpSrc_Upper, "#0") & " = Upper tray" & myDelim & _

Format$(rpSrc_OnlyOne, "#0") & " = Only Tray" & myDelim & _

Format$(rpSrc_Lower, "#0") & " = Lower Tray" & myDelim & _

Format$(rpSrc_Middle, "#0") & " = Middle Tray" & myDelim & _

Format$(rpSrc_Manual_Feed, "#0") & " = Manual Feed" & myDelim & _

Format$(rpSrc_Envelope, "#0") & " = Envelope (from tray)" & myDelim

& _

Format$(rpSrc_Envelope_Manual_Feed, "#0") & " = Envelope (manually

fed)" & myDelim & _

Format$(rpSrc_Auto, "#0") & " = Auto" & myDelim & _

Format$(rpSrc_Tractor, "#0") & " = Tractor" & myDelim & _

Format$(rpSrc_Small_Format, "#0") & " = Small-Format Tray" &

myDelim & _

Format$(rpSrc_Large_Format, "#0") & " = Large-Format Tray" &

myDelim & _

Format$(rpSrc_Large_Capacity, "#0") & " = Large-Capacity Tray" &

myDelim & _

Format$(rpSrc_Cassette, "#0") & " = Cassette" & myDelim & _

Format$(rpSrc_Form_Source, "#0") & " = Form Tray" & myDelim & _

Format$(rpSrc_User, "#0") & " = User-Specified." & _

" Value specified = " & Str(.intDefaultSource) & ". "

End Select

' ---

' Duplex

If Not IsNull(.intDuplex) Then

If (.intDuplex < 1) Or (.intDuplex > 3) Then

errorListAdd ".Duplex: Values allowed = 1 (simplex), 2 (horizontal),

and 3 (vertical). Value specified =" & Str(.intDuplex) & "."

Else

If (.intDuplex > 1) And (Not myPrinterDm.intDuplex > 1) Then

errorListAdd ".Duplex: Duplex option requested, but " &

thePrinter.DeviceName & " does not support duplexing. Value specified =" &

Str(.intDuplex) & "."""

End If

End If

End If

' ---

' Orientation (WE ASSUME THAT ALL PRINTERS SUPPORT PORTRAIT)

Select Case .intOrientation

Case rporient_Portrait

'(do nothing)

Case rporient_landscape

L = driverGetNumericValue(dcOrientation, thePrinter)

If L = 0 Then

errorListAdd ".Orientation: Landscape requested, but " &

thePrinter.DeviceName & " does not support landscape orientation. Value

specified =" & Str(.intOrientation) & "."""

End If

Case Else

errorListAdd ".Orientation: Values allowed = " &

Format$(rporient_Portrait, "#0") & " = Portrait" & myDelim &

Format$(rporient_landscape, "#0") & " = Landscape. Value specified = " &

Str(.intOrientation) & ". "

End Select

' ---

' PaperLength (NOT IMPLEMENTED)

' ---

' PaperSize

Select Case .intPaperSize

Case rpSrc_Upper, rpSrc_OnlyOne, rpSrc_Lower, rpSrc_Middle,

rpSrc_Manual_Feed, rpSrc_Envelope, _

rpSrc_Envelope_Manual_Feed, rpSrc_Auto, rpSrc_Tractor,

rpSrc_Small_Format, rpSrc_Large_Format, _

rpSrc_Large_Capacity, rpSrc_Cassette, rpSrc_Form_Source, rpSrc_User

'(do nothing)

Case Else

myMsg = ".PaperSize: Values allowed = "

myMsg = myMsg & Format$(rpPaper_Letter, "#0") & " = Letter 8 1/2 x

11 in" & myDelim

myMsg = myMsg & Format$(rpPaper_LetterSmall, "#0") & " = Letter

Small 8 1/2 x 11 in" & myDelim

myMsg = myMsg & Format$(rpPaper_Tabloid, "#0") & " = Tabloid 11 x

17" & myDelim

myMsg = myMsg & Format$(rpPaper_Ledger, "#0") & " = Ledger 17 x 11"

& myDelim

myMsg = myMsg & Format$(rpPaper_Legal, "#0") & " = Legal 8 1/2 x

14" & myDelim

myMsg = myMsg & Format$(rpPaper_Statement, "#0") & " = Statement 5

1/2 x 8 1/2" & myDelim

myMsg = myMsg & Format$(rpPaper_Executive, "#0") & " = Executive 7

1/4 x 10 1/2" & myDelim

myMsg = myMsg & Format$(rpPAPER_A3, "#0") & " = A3 297 x 420 mm" &

myDelim

myMsg = myMsg & Format$(rpPaper_A4, "#0") & " = A4 210 x 297 mm" &

myDelim

myMsg = myMsg & Format$(rpPaper_A4_Small, "#0") & " = A4 Small 210

x 297 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A5, "#0") & " = A5 148 x 210 mm" &

myDelim

myMsg = myMsg & Format$(rpPaper_B4, "#0") & " = B4 (JIS) 250 x 354

mm" & myDelim

myMsg = myMsg & Format$(rpPaper_B5, "#0") & " = B5 (JIS) 182 x 257

mm" & myDelim

myMsg = myMsg & Format$(rpPaper_FOLIO, "#0") & " = Folio 8 1/2 x

13" & myDelim

myMsg = myMsg & Format$(rpPaper_QUARTO, "#0") & " = Quarto 215 x

275 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_10X14, "#0") & " = 10x14 in" &

myDelim

myMsg = myMsg & Format$(rpPaper_11X17, "#0") & " = 11x17 in" &

myDelim

myMsg = myMsg & Format$(rpPaper_NOTE, "#0") & " = Note 8 1/2 x 11

in" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_9, "#0") & " = Envelope #9 3

7/8 x 8 7/8" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_10, "#0") & " = Envelope #10 4

1/8 x 9 1/2" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_11, "#0") & " = Envelope #11 4

1/2 x 10 3/8" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_12, "#0") & " = Envelope #12 4

\276 x 11" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_14, "#0") & " = Envelope #14 5

x 11 1/2" & myDelim

myMsg = myMsg & Format$(rpPaper_C_Sheet, "#0") & " = C size sheet"

& myDelim

myMsg = myMsg & Format$(rpPaper_D_Sheet, "#0") & " = D size sheet"

& myDelim

myMsg = myMsg & Format$(rpPaper_E_Sheet, "#0") & " = E size sheet"

& myDelim

myMsg = myMsg & Format$(rpPaper_Env_DL, "#0") & " = Envelope DL 110

x 220mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_C5, "#0") & " = Envelope C5 162

x 229 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_C3, "#0") & " = Envelope C3

324 x 458 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_C4, "#0") & " = Envelope C4

229 x 324 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_C6, "#0") & " = Envelope C6

114 x 162 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_B4, "#0") & " = Envelope B4

250 x 353 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_B5, "#0") & " = Envelope B5

176 x 250 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_B6, "#0") & " = Envelope B6

176 x 125 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_ITALY, "#0") & " = Envelope 110

x 230 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_Monarch, "#0") & " = Envelope

Monarch 3.875 x 7.5" & myDelim

myMsg = myMsg & Format$(rpPaper_Env_Personal, "#0") & " = Envelope

3 5/8 x 6 1/2" & myDelim

myMsg = myMsg & Format$(rpPaper_FanFold_US, "#0") & " = US Std

Fanfold 14 7/8 x 11" & myDelim

myMsg = myMsg & Format$(rpPaper_FanFold_Std_German, "#0") & " =

German Std Fanfold 8 1/2 x 12" & myDelim

myMsg = myMsg & Format$(rpPaper_FanFold_Lgl_German, "#0") & " =

German Legal Fanfold 8 1/2 x 13" & myDelim

myMsg = myMsg & Format$(rpPaper_ISO_B4, "#0") & " = B4 (ISO) 250 x

353 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Japanese_Postcard, "#0") & " =

Japanese Postcard 100 x 148 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_9X11, "#0") & " = 9 x 11" & myDelim

myMsg = myMsg & Format$(rpPaper_10X11, "#0") & " = 10 x 11" &

myDelim

myMsg = myMsg & Format$(rpPaper_15X11, "#0") & " = 15 x 11" &

myDelim

myMsg = myMsg & Format$(rpPaper_Env_Invite, "#0") & " = Envelope,

Invitation 220 x 220 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Letter_Extra, "#0") & " = Letter

Extra 9 x 12" & myDelim

myMsg = myMsg & Format$(rpPaper_LEGAL_Extra, "#0") & " = Legal

Extra 9 x 15" & myDelim

myMsg = myMsg & Format$(rpPaper_Tabloid_Extra, "#0") & " = Tabloid

Extra 11.69 x 18" & myDelim

myMsg = myMsg & Format$(rpPaper_A4_Extra, "#0") & " = A4 Extra 9.27

x 12.69" & myDelim

myMsg = myMsg & Format$(rpPaper_Letter_Transverse, "#0") & " = A4

Transverse 210 x 297 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Letter_Extra_Transverse, "#0") & "

= Letter Extra Transverse 9\275 x 12" & myDelim

myMsg = myMsg & Format$(rpPaper_A_Plus, "#0") & " =

SuperA/SuperA/A4 227 x 356 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_B_Plus, "#0") & " =

SuperB/SuperB/A3 305 x 487 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_Letter_Plus, "#0") & " = Letter

Plus 8.5 x 12.69" & myDelim

myMsg = myMsg & Format$(rpPaper_A4_Plus, "#0") & " = A4 Plus 210 x

330 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A5_Transverse, "#0") & " = A5

Transverse 148 x 210 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_B5_Transverse, "#0") & " = B5 (JIS)

Transverse 182 x 257 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A3_Extra, "#0") & " = A3 Extra 322

x 445 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A5_Extra, "#0") & " = A5 Extra 174

x 235 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_B5_Extra, "#0") & " = B5 (ISO)

Extra 201 x 276 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A2, "#0") & " = A2 420 x 594 mm" &

myDelim

myMsg = myMsg & Format$(rpPaper_A3_Transverse, "#0") & " = A3

Transverse 297 x 420 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_A3_Extra_Transverse, "#0") & " = A3

Extra Transverse 322 x 445 mm" & myDelim

myMsg = myMsg & Format$(rpPaper_User, "#0") & " = (user-defined)" &

myDelim

myMsg = myMsg & " Value specified = " & Str(.intPaperSize) & ". "

errorListAdd myMsg

End Select

' ---

' PaperWidth (NOT IMPLEMENTED)

' ---

' PrintQuality

If .intPrintQuality > 0 And (Not .intYResolution > 0) Then

errorListAdd ".PrintQuality: A positive value in .PrintQuality is

regarded as an x-axis resolution and must be accompanied by a positive value in

..YResolution."

Else

Select Case .intPrintQuality

Case rpQual_Draft, rpQual_Low, rpQual_Medium, rpQual_High

'(do nothing, these are allowed values)

Case Else

errorListAdd ".PrintQuality: Allowed negative values are: -1 =

Draft, -2 = Low, -3 = Medium, -4 = High. Value specified = " &

Str(.intPrintQuality) & ". "

End Select

End If

' ---

' ScaleAmount (NOT IMPLEMENTED)

' ---

' TrueType Option (NOT IMPLEMENTED)

' ---

' YResolution (in conjunction w/PrintQuality)

If .intYResolution > 0 And (Not .intPrintQuality > 0) Then

errorListAdd ".YResolution: If present, YResolution must be accompanied

by a positive value in .PrintQuality, which will function as the x-axis

resolution."

Else

If (.intYResolution > 0) And (.intPrintQuality > 0) Then

myCurRez.x = .intPrintQuality

myCurRez.Y = .intYResolution

myPointArray = driverGetPointArray(dcEnumResolutions, thePrinter)

myArraySize = UBound(myPointArray) - 1

capabilitySupported = False

For i = 0 To myArraySize

If (myPointArray(i).x = myCurRez.x) And (myPointArray(i).Y =

myCurRez.Y) Then

capabilitySupported = True

End If

Next i

If capabilitySupported = False Then

valuesFound = ""

For i = 0 To myArraySize

If Len(valuesFound) > 0 Then

valuesFound = valuesFound & ","

End If

valuesFound = valuesFound & Space(myIndent) &

Format$(myPointArray(i).x, "#0") & "x" & Format$(myPointArray(i).Y, "#0")

Next i

errorListAdd ".PrintQuality: Unsupported resolution. Resolutions

supported are " & valuesFound & ". Resolution specified = " &

Format$(myCurRez.x, "#0") & "x" & Format$(myCurRez.Y, "#0") & "."

End If

End If

End If

End With

Xit:

callStackPop

On Error Resume Next

Exit Sub

catchError:

errorLogWrite ""

Resume Xit

End Sub

Private Function driverGetStringArray(theDeviceCapabilityType As

mDeviceCapabilityTypes, ByRef thePrinter As mPrinterStruct) As String()

callStackPush mModuleName, "driverGetStringArray"

On Error GoTo catchError

' PURPOSE: To retrieve an array of strings from a printer's driver

' ACCEPTS: - A constant telling what capability we are looking for. e.g.

Printer resolution

' - A printer struct containing name, port of printer

' RETURNS: Array of strings e.g. Paper Names, File Dependencies, Bin Names

'

' NOTES: 1)We use the DeviceCapabilities API call to retrieve a sting of

whatever capabilities

' we're looking for. The raw string is padded with nulls so it

contains fixed-length

' chunks.

' 2) Once we get that string, we use 'StripNulls(Mid$())' to parse it

into our string array.

Dim myStringArray() As String

Dim myListCount As Long

Dim myBuffer As String

Dim L As Long

Dim i As Integer

Dim myStringSize As Integer

Dim okToProceed As Boolean

Const apiCallFailed = -1

Select Case theDeviceCapabilityType

Case dcPaperNames

myStringSize = mDriverStringLenPaperName

okToProceed = True

Case dcBinNames

myStringSize = mDriverStringLenBinName

okToProceed = True

Case dcFileDependencies

myStringSize = mDriverStringLenBinDependency

okToProceed = True

Case Else

errorLogWrite "Unexpected list type:" & Str(theDeviceCapabilityType)

End Select

If okToProceed = True Then

myListCount = DeviceCapabilitiesLng(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, 0, 0)

If myListCount = apiCallFailed Then

errorLogWrite "Unable to retrieve list count for " &

Str(theDeviceCapabilityType)

Else

If myListCount > 0 Then

ReDim myStringArray(0 To myListCount - 1)

myBuffer = String$(myStringSize * myListCount, 0)

L = DeviceCapabilitiesStr(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, myBuffer, 0)

If L = apiCallFailed Then

errorLogWrite "Unable to retrieve list for " &

Str(theDeviceCapabilityType)

Else

For i = 0 To myListCount - 1

myStringArray(i) = stripNulls(Mid$(myBuffer, i * myStringSize

+ 1, myStringSize))

Next i

End If

End If

End If

driverGetStringArray = myStringArray

End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function stripNulls(ByVal theOriginalString As String) As String

callStackPush mModuleName, "stripNulls"

On Error GoTo catchError

' PURPOSE: To remove any nulls from a string

' ACCEPTS: The target string

' RETURNS: Target string with any nulls removed

If InStr(1, theOriginalString, Chr(0), vbTextCompare) Then

theOriginalString = Mid(theOriginalString, 1, InStr(theOriginalString,

Chr(0)) - 1)

End If

stripNulls = theOriginalString

Xit:

debugStackPop

On Error Resume Next

Exit Function

catchError:

bugAlert True, ""

Resume Xit

End Function

Private Function driverGetNumericValue(ByVal theDeviceCapabilityType As

mDeviceCapabilityTypes, ByRef thePrinter As mPrinterStruct) As Long

callStackPush mModuleName, "driverGetNumericValue"

On Error GoTo catchError

' PURPOSE: To retrieve an array of strings from a printer's driver

' ACCEPTS: - A constant telling what capability we are looking for. e.g. Copies

' - A printer struct containing name, port of printer

' RETURNS: A 'Long' value

'F

' NOTES: 1) The DeviceCapabilities() API call returns -1 upon failure

Dim L As Long

L = DeviceCapabilitiesLng(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, 0, 0)

If L = -1 Then

errorLogWrite "Unable to retrieve device capability value for " &

Str(theDeviceCapabilityType)

End If

driverGetNumericValue = L

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function driverGetIntegerArray(ByVal theDeviceCapabilityType As

mDeviceCapabilityTypes, ByRef thePrinter As mPrinterStruct) As Integer()

callStackPush mModuleName, "driverGetIntegerArray"

On Error GoTo catchError

' PURPOSE: To retrieve an array of integers from a printer's driver

' ACCEPTS: - A constant telling what capability we are looking for. e.g. Bin

values

' - A printer struct containing name, port of printer

' RETURNS: A 'Long' value

'

' NOTES: 1) The DeviceCapabilities() API call returns -1 upon failure

Dim myIntegerArray() As Integer

Dim myListCount As Long

Dim L As Long

myListCount = DeviceCapabilitiesLng(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, 0, 0)

If myListCount = -1 Then

errorLogWrite "Unable to retrieve list count for " &

Str(theDeviceCapabilityType)

Else

If myListCount > 0 Then

ReDim myIntegerArray(0 To myListCount - 1)

L = DeviceCapabilitiesAny(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, myIntegerArray(0), 0)

If L = -1 Then

errorLogWrite "Unable to retrieve list for " &

Str(theDeviceCapabilityType)

End If

End If

End If

driverGetIntegerArray = myIntegerArray

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function driverGetPointValue(ByVal theDeviceCapabilityType As

mDeviceCapabilityTypes, ByRef thePrinter As mPrinterStruct) As mXyPoint

callStackPush mModuleName, "driverGetPointValue"

On Error GoTo catchError

' PURPOSE: To retrieve a single x/y pair of integers from a printer's driver

' ACCEPTS: - A constant telling what capability we are looking for. e.g. Bin

values

' - A printer struct containing name, port of printer

' RETURNS: An x/y coordinate value

'

' NOTES: 1) The DeviceCapabilities() API call returns -1 upon failure

Dim myPoint As mXyPoint

Dim L As Long

Dim myDoubleWord As mDoubleWordStruct

Dim mySplitWord As mSplitWordStruct

L = DeviceCapabilitiesLng(thePrinter.DeviceName, thePrinter.Port,

theDeviceCapabilityType, 0, 0)

If L = -1 Then

errorLogWrite "Unable to retrieve device capability for type" &

Str(theDeviceCapabilityType)

End If

myDoubleWord.Value = L

LSet mySplitWord = myDoubleWord

myPoint.x = mySplitWord.LoWord

myPoint.Y = mySplitWord.HiWord

driverGetPointValue = myPoint

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function isBool(ByVal theValue As Integer) As Boolean

callStackPush mModuleName, "isBool"

On Error GoTo catchError

' PURPOSE: To determine whether or not the value in question is a boolean

' ACCEPTS: The value

' RETURNS: True if boolean, else false

If Not IsNull(theValue) Then

If IsNumeric(theValue) Then

If ((theValue = 0) Or (theValue = -1)) Then

isBool = True

End If

End If

End If

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function pdfFileNameCreate(ByVal theGetFileNameFrom As Long, ByVal

theFileNamePrefix As String, ByVal theFileNameSuffix As String, ByRef theReport

As Report) As String

callStackPush mModuleName, "pdfFileNameCreate"

On Error GoTo catchError

' PURPOSE: To create the complet DOS path to the PDF file that Acrobat will

create

' ACCEPTS: - A code telling where to get file name from

' - An optional prefix for the file name

' - An optional suffix for the file name

' - A pointer to the report in question

'

' RETURNS: DOS path or empty string, depending upon success

' SETS: - mCurErrorCount (via 'errorListAdd')

' - mCurErrorList (via 'errorListAdd')

Dim myPdfFileName As String

Select Case theGetFileNameFrom

Case rpGetFromReportName

myPdfFileName = theFileNamePrefix & theReport.Name & theFileNameSuffix

Case rpGetFromReportCaption

With theReport

If Len(Trim$(.Caption & "")) > 0 Then

myPdfFileName = theFileNamePrefix & theReport.Caption &

theFileNameSuffix

Else

myPdfFileName = theFileNamePrefix & theReport.Name &

theFileNameSuffix

End If

End With

Case Else

errorListAdd ".GetPdfFileNameFrom: Values allowed: 1 = From Report Name,

2 = From Report's .Caption string. Value passed = " & Format$(theGetFileNameFrom

& "", "#") & ". "

End Select

pdfFileNameCreate = myPdfFileName

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function extractDirFromFullPath(theFullPath) As String

callStackPush mModuleName, "extractDirFromFullPath"

On Error GoTo catchError

' PURPOSE: To extract the directory portion (including final backslash)

' of a full path (i.e. one including file name....)

' ACCEPTS: The full path

' RETURNS: The directory portion of that path, including final backslash

'

' NOTES: It all hinges on the full path ending with a file name

Dim x As Integer

Dim Y As Integer

Dim L As Integer

Dim myDir As String

x = 1

Y = 999

L = Len(theFullPath)

Do While Y > 0

Y = InStr(x, theFullPath, "\")

If Y > 0 Then

L = Y

x = Y + 1

End If

Loop

extractDirFromFullPath = Left$(theFullPath, L - 1)

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

errorLogWrite ""

Resume Xit

End Function

Private Function extractDirFromFullPath_elw(theFullPath) As String

On Error GoTo catchError 'NO ERROR LOGGING BECAUSE USED BY ERROR ROUTINES

' PURPOSE: To extract the directory portion (including final backslash)

' of a full path (i.e. one including file name....)

' ACCEPTS: The full path

' RETURNS: The directory portion of that path, including final backslash

'

' NOTES: 1) It all hinges on the full path ending with a file name

Dim x As Integer

Dim Y As Integer

Dim L As Integer

Dim myDir As String

x = 1

Y = 999

L = Len(theFullPath)

Do While Y > 0

Y = InStr(x, theFullPath, "\")

If Y > 0 Then

L = Y

x = Y + 1

End If

Loop

extractDirFromFullPath_elw = Left$(theFullPath, L - 1)

Xit:

callStackPop

On Error Resume Next

Exit Function

catchError:

MsgBox "clsReportPrinter: runtime error in extractDirFromFullPath_elw()"

Resume Xit

End Function

Public Property Get Version() As String

callStackPush mModuleName, "Version"

On Error GoTo catchError

' PURPOSE: - To allow the current version number of this class

' RETURNS: String containing version number

Version = mVersionNumber

Xit:

callStackPop

On Error Resume Next

Exit Property

catchError:

errorLogWrite ""

Resume Xit

End Property

== ==============================

--

PeteCresswell

				
				
			
				
					Nov 13 '05
 #2

 Brian

 		 (Pete Cresswell)" <x@y.z> wrote in message

news:v2********************************@4ax.com...
 Assuming that all users have PdfWriter (couple hundred dollars per seat)
 installed on their PC's, what you do is use the registry as your interface
to Acrobat. You set parms for file name and a couple other things and then
just let it rip.

Or, the excellent Win2PDF ($35 for commercial use, free for non-commercial).

It's FAQ page describes how to do what you want (with one line of code).

				
				
			
				
					Nov 13 '05
 #3

 Ryan

 		 I had the same problem a long time ago and did manage to find the

solution. Hopefully Adobe haven't changed the ability to stop it

prompting for a filename, but they used to have something in win.ini

to allow you to switch this off and use a permanent name.

 http://groups.google.com/groups?hl=e...%3D20%26sa%3DN

 http://groups.google.com/groups?hl=e...%3D10%26sa%3DN

However, it looks like the solution has been moved (while the site is

updated), so you may need to track it down. Basically, the way I

(finally) fixed the problem was to print to a consistent file name

(using the PDF driver and setting Adobe not to prompt for a file name

e.g c:\myfile.pdf), and then renamed the file as I needed using

FileSystemObjects in VBA (this was several years ago mind) to whatever

I needed it to be. For my needs this did the trick. I don't have the

code any more unfortunately.

Sorry it's a bit vague, but it may point you towards a solution.

Ryan

 do*********@hotmail.com (dog) wrote in message news:<d1*************************@posting.google.c om>... I've seen plenty of articles on this topic but none of them have been
 able to solve my problem.

 I am working with an Access 97 database on an NT4.0 machine, which has
 many Access reports.
 I want my users to be able to select a report, click on a command
 button on a form, which will then automatically create the report as a
 pdf file and save it to the user's machine.

 I am using Adobe Acrobat (5.0 I think) and have Adobe Distiller as a
 printer. I can get my code to change my default printer to Adobe
 Distiller, and using the Docmd.OutputTo, it will begin to create the
 file.
 However what then happens is: a ?Save File As' dialog box appears,
 prompts me to click on ?OK' and when I do, the report is created and
 saved, but Adobe then open the report. I want my code to be able to
 override this dialog box and automatically save the report with a file
 name I put in a variable, and stop Adobe from opening at the end.
 I have looked at using the properties in Adobe but they don't seem to
 help.

 Is what I want to do possible? I don't know and unfortunately I work
 for a large organisation and have to use Adobe and no other product ?
 free or not.

 I'm fairly new to VBA programming and messing with the registry is
 beyond me so if anyone has any ideas, or better still has the code, it
 would be much appreciated.

 Many Thanks.

				
				
			
				
					Nov 13 '05
 #4

 gj

 		 FOr a good free PDF printer try PDFCREATOR at
 http://sector7g.wurzel6.de/pdfcreator/index_en.htm

Make sure you install the latest patch.

GJ

				
				
			
				
					Nov 13 '05
 #5

 dog

 		 Thanks for all the suggestions but I still can't get it going.

I tried the above code but everytime it ran, the Adobe 'save as'

dialog box still came up, prompting me for a filename and then

launching adobe.

Maybe there is something wrong with the setup on the machines where I

work, but I tried it on 2 NT.4 workstations and had the same problem

on both???

Dog
 ry********@hotmail.com (Ryan) wrote in message news:<78**************************@posting.google. com>... I had the same problem a long time ago and did manage to find the
 solution. Hopefully Adobe haven't changed the ability to stop it
 prompting for a filename, but they used to have something in win.ini
 to allow you to switch this off and use a permanent name.

 http://groups.google.com/groups?hl=e...%3D20%26sa%3DN

 http://groups.google.com/groups?hl=e...%3D10%26sa%3DN

 However, it looks like the solution has been moved (while the site is
 updated), so you may need to track it down. Basically, the way I
 (finally) fixed the problem was to print to a consistent file name
 (using the PDF driver and setting Adobe not to prompt for a file name
 e.g c:\myfile.pdf), and then renamed the file as I needed using
 FileSystemObjects in VBA (this was several years ago mind) to whatever
 I needed it to be. For my needs this did the trick. I don't have the
 code any more unfortunately.

 Sorry it's a bit vague, but it may point you towards a solution.

 Ryan

 do*********@hotmail.com (dog) wrote in message news:<d1*************************@posting.google.c om>... I've seen plenty of articles on this topic but none of them have been
 able to solve my problem.

 I am working with an Access 97 database on an NT4.0 machine, which has
 many Access reports.
 I want my users to be able to select a report, click on a command
 button on a form, which will then automatically create the report as a
 pdf file and save it to the user's machine.

 I am using Adobe Acrobat (5.0 I think) and have Adobe Distiller as a
 printer. I can get my code to change my default printer to Adobe
 Distiller, and using the Docmd.OutputTo, it will begin to create the
 file.
 However what then happens is: a ?Save File As' dialog box appears,
 prompts me to click on ?OK' and when I do, the report is created and
 saved, but Adobe then open the report. I want my code to be able to
 override this dialog box and automatically save the report with a file
 name I put in a variable, and stop Adobe from opening at the end.
 I have looked at using the properties in Adobe but they don't seem to
 help.

 Is what I want to do possible? I don't know and unfortunately I work
 for a large organisation and have to use Adobe and no other product ?
 free or not.

 I'm fairly new to VBA programming and messing with the registry is
 beyond me so if anyone has any ideas, or better still has the code, it
 would be much appreciated.

 Many Thanks.

				
				
			
				
					Nov 13 '05
 #6

 cyranoVR

 		 I had a similar problem and figured out a solution using GhostScript,

RedMon and some Visual Basic automation with the FileSystemObject and

WScript.Network objects.

I posted the details of my approach here:
 http://groups-beta.google.com/group/...1d9056438b0378

Regards,

CyranoVR at Gmail dot com

				
				
			
				
					Nov 13 '05
 #7

 cyranoVR

 		 Also, the text formatting in my posting isn't that great thanks to my

inexperience with google groups. Here's a better-formatted version:
 http://ourworld.cs.com/CyranoVR/autopdf.txt

				
				
			
				
					Nov 13 '05
 #8

 New Post
 This thread has been closed and replies have been disabled. Please start a new discussion.

 Similar topics
 	
			0
				

 How to create graphs and print reports from access

			by: banderas |
			last post by:

			
			Just wondering if it is possible to use access to create grpahs and
even print reports? Is it possible to link excell with access so one
can be the date base and when graphs and analytical reports...
			
 Microsoft Access / VBA

	
			1
				

 strange error messages when trying to create reports in Access

			by: intl04 |
			last post by:

			
			I am getting strange print-related error messages when trying to
create (not print!) reports. For example, when I click 'new' to create
a report then choose 'design view', I get an error message...
			
 Microsoft Access / VBA

	
			2
				

 Create a pdf file

			by: Russell |
			last post by:

			
			Hi, I have an asp.net web page using vb.net to code with. I have to create a
report using pdf format to display online. can anyone help me with this.

Thanks in advance
Russell
			
 ASP.NET

	
			2
				

 VB.NET - reading reports from Access MDB

			by: B.Newman |
			last post by:

			
			I've got some VB.NET code that *should* get a list of reports from an
Access MDB and populate a list box with them.

It doesn't detect any of the reports at all. oAccess.Reports.Count
comes up as...
			
 Visual Basic .NET

	
			0
				

 MS Access 2003 - automatically create reports/subreports based on criteria

			by: neoteny2 |
			last post by:

			
			I need MS Access to automatically create reports/subreports based on
specific criteria. I am building a database in Access 2003 with
different locations/sites. I have the "sites" table created...
			
 Microsoft Access / VBA

	
			2
				

 Can I create an index on a view?

			by: Shirley |
			last post by:

			
			We are running DB2 on iSeries V5R2.
Using AQUA DATA STUDIO with a connection to our iSeries, I created a
view using SQL and I am trying to create an index on this view using
the code below.
...
			
 DB2 Database

	
			0
				

 Problems using ASP and Crystal Reports 8.5 to create dynamic PDF reports

			by: PughDR |
			last post by:

			
			As the subject of this topic suggestions I am trying to find a way to
use ASP, SQL Server, Com+ and Crystal Reports 8.5 to Create Dynamic PDF
Reports Over The Web, but the only article I found that...
			
 ASP / Active Server Pages

	
			3
				

 Create Dynamic Report : with Parent Child Command

			by: creative1 |
			last post by:

			
			Here is how you create a complex data report that involves parent and child commands and you can update information at runtime. Its pretty straight forward to work with simple queries; however,...
			
 Visual Basic 4 / 5 / 6

	
			2
				

 How can I create client accounts pages for customer's files to uploaded

			by: nja2222 |
			last post by:

			
			I would like to create a page for my clients to login and check for updates on their accounts. Then I would like to create a page where my employees can login and make updates, specifically new file...
			
 PHP

	
			2
				

 Access Europe Meeting - Wed 7 Feb

			by: isladogs |
			last post by:

			
			The next Access Europe meeting will be on Wednesday 7 Feb 2024 starting at 18:00 UK time (6PM UTC) and finishing at about 19:30 (7.30PM).

In this month's session, the creator of the excellent VBE...
			
 Microsoft Access / VBA

	
			1
				

 Automate a search field into a web page hyperlink??

			by: davi5007 |
			last post by:

			
			Hi,

Basically, I am trying to automate a field named TraceabilityNo into a web page from an access form. I've got the serial held in the variable strSearchString. How can I get this into the...
			
 Microsoft Access / VBA

	
			0
				

 A Simpler Way to Calculate WorldQuant 101 Alphas

			by: DolphinDB |
			last post by:

			
			The formulas of 101 quantitative trading alphas used by WorldQuant were presented in the paper 101 Formulaic Alphas. However, some formulas are complex, leading to challenges in calculation.

Take...
			
 General

	
			0
				

 Do you want to allow this website to open an app?

			by: Aftab Ahmad |
			last post by:

			
			Hello Experts!

I have written a code in MS Access for a cmd called "WhatsApp Message" to open WhatsApp using that very code but the problem is that it gives a popup message everytime I clicked on...
			
 Microsoft Access / VBA

	
			0
				

 How to disable "Do you want to allow this website to open an app?"

			by: Aftab Ahmad |
			last post by:

			
			So, I have written a code for a cmd called "Send WhatsApp Message" to open and send WhatsApp messaage. The code is given below.

Dim IE As Object

 Set IE =...
			
 Microsoft Access / VBA

	
			0
				

 batch import excel into database automaticly

			by: ryjfgjl |
			last post by:

			
			ExcelToDatabase: batch import excel into database automatically...
			
 Data Management

	
			0
				

 Vlookup from external source(excel) win32com py

			by: marcoviolo |
			last post by:

			
			Dear all,

I would like to implement on my worksheet an vlookup dynamic , that consider a change of pivot excel via win32com, from an external excel (without open it) and save the new file into a...
			
 Python

	
			0
				

 Sending mail to Excel via CDO of a given range

			by: Vimpel783 |
			last post by:

			
			Hello!
Guys, I found this code on the Internet, but I need to modify it a little. It works well, the problem is this: Data is sent from only one cell, in this case B5, but it is necessary that data...
			
 Microsoft Excel

	
			0
				

 How to capture Modbus TCP/UDP data packets in practice

			by: jfyes |
			last post by:

			
			As a hardware engineer, after seeing that CEIWEI recently released a new tool for Modbus RTU Over TCP/UDP filtering and monitoring, I actively went to its official website to take a look. It turned...
			
 Desktop Software

By using Bytes.com and it's services, you agree to our Privacy Policy and Terms of Use.

To disable or enable advertisements and analytics tracking please visit the manage ads & tracking page.

BYTES.COM © 2024
 About Bytes
 Terms Of Use
 Privacy Policy
 Sitemap

 Advertise on Bytes:
 Post a Job
 Sponsored Posts
 Platinum & Gold Sponsors
 Hire Now!

