1. Objectives

To code a project that

· Indicates your understanding of the Gale-Shapley stable matching algorithm.

· Requires you to apply the stable matching problem in a non-obvious manner.

2. Problem Statement

Peripatetic Shipping Lines inc., is a shipping company that owns n ships and provides service to n ports. Each of its ships has a schedule that says, for each day of the month, which of the ports is it to visit, or whether it is to be out to sea. (You can assume m the “month” here has m days, for some m>=n.) Each ship visits each port for exactly one day during the month. For safety reasons, the following restriction (i.e. constraint) is put in place:

 No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this month, via the following scheme. They want to truncate each ship's schedule: for each ship Si, there will be some day when it arrives in one its scheduled ports and it simply remains there for the rest of the month (for maintenance). This means that Si will not visit the remaining ports on its schedule (if any such ports exist) that month, but this is acceptable. So the truncation of Si’s schedule will simply consist of its original schedule up to a certain specified day on which it is in a port p; the remainder of the truncated schedule simply has it remain in port p. Now, the company's question to you is the following: Given the schedule for each ship, find a truncation so that the "no two ships can be in the same port on the same day" restriction holds.

For example, suppose n=2, so we have two ships (S1 and S2) and thus two ports (P1 and P2). Suppose the schedules are given as follows (where OS means "out to sea"):

Ship

Schedule

S1

P1, OS, P2, OS

S2

OS, P1, OS, P2

A resulting truncated schedule could then be:

Ship

Schedule

S1

P1, OS, P2

S2

OS, P1

In fact, this is the only valid set of truncated schedules for the given input! Since every

ship must stop in a port, the only other option would be to have S1 finish in P1 for

maintenance, but this would prevent S2 from stopping in P1 (by its schedule) - and thus

anywhere - so it is impossible.
3. Program Details
Write a program that reads in a schedule from a file that is specified as part of the command line (NOT prompted for by the running program!) and prints out a truncated schedule according to the above, following the strict guidelines for output given below.

3.1 Input File
Files containing schedules will have one line for each ship as follows:

 <ship-name> <day 1> <day 2> ….. <day m>

Where:

· <ship-name> is a string representing a ship.

· <day i> will either be the string OS, meaning “out to sea” or a string representing the port to be visited on day i (<=m).

Note that you will have to carefully read the first linear input to determine both the value of m and n. Take care not to include the second ship name as a port name in the first ship’s schedule, and so on.

Again, remember that you should not have your program prompt the user for a filename; instead, the program should get the filename as the only command line argument (besides the name of the executable itself).

3.2 Output
Your output must match the following format, or you will lose a significant amount of points. The only thing your program should print to screen is the truncated schedules for each ship, listing the ship’s schedule one per line in the order they were read in. Each line should be printed as follows, with single spaces only where required and a standard new line at the end of each line (be sure not to put any additional spaces between text and a newline).

 Specially, a schedule for a ship must be printed out as follows:

<ship-name> : <space><day 1><space><day 2>…..<day k><newline>
Where:
· <ship-name> is the ship-name as it was read in,

· <space> is just a single space character (note that there is not a pace after day k).

· <day i> is either the string OS (meaning out to sea) or the name of the corresponding port.

Note that k<=m, or we wouldn’t have a truncated schedule.

4. Other Requirements
Program must run in O(m.n) time. Note that m>=n.

Develop the program in C++

“This problem is the exercise questions Problem # 6 on page 25 in chapter 1 of Algorithm Design by Jon Kleinberg and Eva Tardos”.

