	Custom Configuration Handlers
	Visual Studio 2008

Visual Studio 2008
Custom Configuration Sections
Let’s consider the following app.config extract. When you add a new configuration file to your application, other sections will be automatically included; however, I’ve cut out the entries unnecessary for this example to avoid confusion.
<configuration>

 <!-- Section Declarations -->

 <configSections>

 <section name="firstSection"

 type="MyApp.firstHandler,

 MyApp" />

 <section name="secondSection"

 type="MyApp.secondHandler,

 MyApp" />

 <section name="thirdSection"

 type="MyApp.thirdHandler,

 MyApp" />

 </configSections>

 <!-- Section Definitions -->
 <thirdSection />

 <firstSection />

 <secondSection />

</configuration>

Firstly, the <configSections/> node defines each of the application configuration sections that are important for custom application attributes, such as machine or instance specific configurations. Each of the nodes within this section are section declarations.

Each of the attributes within the node declaration pertains to how the section will be interpretted by our custom configuration interpreter API which we must create afterwards.

The name attribute refers to the node name when we create our section definition. The type attribute refers to the class which will be used to interpret the data in our section definition. This attribute is a set of comma separated values in which you can provide a number of values, the first and second are the most important being the reference to the class that will be used to interpret the section definition and the name of the assembly in which that class appears. In the definition above, there are three configuration handlers, one for each of the sections, all found in the assembly MyApp.

The order of declaration elements within configSections and the order of section definitions are unimportant, they aren’t required to appear in the same order in either case, although it is recommended that not only should they appear in the same order, but that they should follow some logical sequence.
For instance, while the following will compile and run, it isn’t intuitive and therefore should be avoided.
<configuration>

 <!-- Section Declarations -->
 <configSections>

 <section name="secondSection"
 type="MyApp.secondHandler,
 MyApp" />

 <section name="thirdSection"
 type="MyApp.thirdHandler,

 MyApp" />

 <section name="firstSection"
 type="MyApp.firstHandler,
 MyApp" />

 </configSections>

 <!-- Section Definitions -->
 <thirdSection />

 <firstSection />

 <secondSection />

</configuration>

So, now that we understand the layout of the configuration file, let’s define a configuration that is more representative of the real world.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <!-- Section Declarations -->

 <configSections>

 <section name="MyCustomSection"
 type="ConfigurationExample.SectionReader,
 ConfigurationExample" />

 </configSections>
 <!-- Section Definitions -->
 <MyCustomSection descr="Custom Section Descr">

 <OuterCol descr="Outer Collection">

 <Outer name="O1" descr="Outer 1">

 <InnerCol descr="Outer 1 Inner Collection">

 <Inner name="O1_I1" descr="O1_I1 descr" data="1.1" />

 <Inner name="O1_I2" descr="O1_I1 descr" data="1.2" />

 </InnerCol>

 </Outer>

 <Outer name="O2" description="Outer 2">

 <InnerCol descr="Outer 2 Inner Collection">

 <Inner name="O2_I1" descr="O2_I1 descr" data="2.1" />

 <Inner name="O2_I2" descr="O2_I2 descr" data="2.2" />

 <Inner name="O2_I3" descr="O2_I3 descr" data="2.3" />

 </InnerCol>

 </Outer>

 <Outer name="O3" descr="Outer 3">

 <InnerCol descr="Outer 3 Inner Collection">

 <Inner name="O3_I1" descr="O3_I1 descr" data="3.1" />

 </InnerCol>

 </Outer>

 </OuterCol>

 </MyCustomSection>

</configuration>

The configuration is a generic example of the kind of layout you could expect to see in a real world application. My section is called MyCustomSection, and the declaration defines that a class called SectionReader in the ConfigurationExample namespace (ConfigurationExample.SectionReader), found in the ConfigurationExample assembly will be used to interpret the section.

MyCustomSection contains an outer collection with a description of “All my data”. The other collection is basically a bunch of items that themselves have attributes and collections.

So how do we read this from our application?

Firstly, we must define a class that inherits from ConfigurationSection – this class will be our section reader.

VB

Public Class SectionReader

 Inherits ConfigurationSection

Public Class

In order to tell our class how to access the application configuration, we define properties much like in any other class, but with a couple of notable exceptions. Firstly, we have to decorate the property with a compiler attribute to tell it where the data is coming from, and secondly, we return the data from the inherited class, as opposed to the current class.

<ConfigurationProperty("descr")> _

Public ReadOnly Property Description() As String

 Get

 Return CType(MyBase.Item("descr"), String)

 End Get

End Property
The <ConfigurationProperty()> attribute tells the serializer (that converts the XML in the app.config to a binary form) that this property is referencing the description attribute for the section. The item name that is referenced by MyBase.Item must match the name of the property being referenced.

To reference collections, we do something not altogether different. However, we go about it in a slightly different fashion. Instead of returning a property that returns a piece of data, we are returning a collection. We still set the ConfigurationProperty() attribute to reference our OuterCollection node. This time however, we add a second attribute – this one specifies that this property in the configuration file is a collection – ConfigurationCollection(). The two most useful parameters when reading from configuration files are to tell the property what data type is held in the collection (itemType) and the keyword that will be used to add items to the collection.
<ConfigurationProperty(
"OuterCol", _

IsDefaultCollection:=True, _

IsRequired:=True)> _

<ConfigurationCollection(GetType(OuterItem), _

AddItemName:="Outer")> _

Public ReadOnly Property Items() As OuterCollection

 Get

 Return CType(MyBase.Item("OuterCol"), OuterCollection)

 End Get

End Property

You may recall from looking at previous app.config files elements having a similar format to <add key="key1" value="123" /> the add keyword is telling the handler that this is the next element and should be added to the collection. In the example above we have replaced the default keyword add with our own custom keyword OuterItem.
So now that we’ve defined that this property returns a collection, we need to get our API to actually build our collection and add the child items into it. So place the previous properties in your SectionReader class and end the class declaration, for now you can ignore the compiler errors as this class is currently referring to classes we have yet to create. Create a new class to hold the OuterCollection… being unimaginative, I’m calling my outer collection OuterCollection. Do you like that? Me too… This class will inherit from ConfigurationElementCollection.
Public Class OuterCollection

 Inherits ConfigurationElementCollection

End Class
Because our OuterCollection inherits ConfigurationElementCollection, we are required to define the CreateNewElement() and GetElementKey() methods. The CreateNewElement() method creates a new ConfigurationElement which will be added to the collection. This returns a new OuterItem instance class.
Protected Overloads Overrides Function CreateNewElement() As System.Configuration.ConfigurationElement

 Return New OuterItem

End Function

The GetElementKey returns the key for the element passed in. The element object can be any ConfigurationElement instance, and as such, we will be passing in an OuterItem object. The method will return the information found in the item’s name property.

Protected Overrides Function GetElementKey(ByVal element As System.Configuration.ConfigurationElement) _
 As Object
 Return CType(element, OuterItem).Name
End Function

The CreateNewElement() and GetElementKey() methods are really the only methods we need in our class to build the collection. However, in our application configuration, we’ve defined the descr attribute. If we don’t specify a property to read this attribute, then our application will raise a runtime error when it parses the configuration file stating that the unrecognized attribute descr was found.
So as with our SectionReader class, we will specify the description attribute

<ConfigurationProperty("descr")> _

Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("descr")

 End Get

End Property

An additional helpful property would allow us to reference items in the collection by name rather than by index.

Default Public Shadows ReadOnly Property Item(ByVal Name As String) As OuterItem

 Get

 Return CType(BaseGet(Name), OuterItem)

 End Get

End Property
This is particularly useful because it allows us to reference elements in the configuration file without having to know the index of the element, or which order the elements exist in the configuration file.

Having specified our SectionReader and OuterCollection classes, we now need to create the OuterItem class to handle the items that are being placed into the collection.

Still feeling uninspired I’m going to call my outer item class OuterItem and it will inherit from ConfigurationElement.

Public Class OuterItem

 Inherits ConfigurationElement

End Class

As with the other two classes, we need to define some properties to get the name, and description and like the SectionReader class, we need to specify a property that will hold our inner item collection.
<ConfigurationProperty("name",
IsKey:=True,
IsRequired:=True)> _
Public ReadOnly Property Name() As String

 Get

 Return MyBase.Item("name")

 End Get

End Property

<ConfigurationProperty("descr")> _

Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("descr")

 End Get

End Property

<ConfigurationProperty("InnerCol")> _

<ConfigurationCollection(GetType(InnerItem),
AddItemName:="Inner")> _

Public ReadOnly Property InnerItems() As InnerCollection

 Get

 Return CType(MyBase.Item("InnerCol"), InnerCollection)

 End Get

End Property

The one difference you may notice in the code extract above is the existence of two extra parameters for the ConfigurationProperty() attribute – IsKey and IsRequired. These specify that this item is the key for the element and that the item is required to exist within the element respectively.
We can use the same method as we used to build the outer collection to build the inner collection. The single difference is that the elements within the inner collection won’t hold any collection properties, but only single instance properties. Don’t forget to add a property to handle the data attribute of the Inner elements.

<ConfigurationProperty("data")> _

Public ReadOnly Property Data() As String

 Get

 Return MyBase.Item("data")

 End Get

End Property
Referencing data in the custom sections is as easy as:

Dim oSR As SectionReader = ConfigurationManager.GetSection("MyCustomSection")

MsgBox(oSR.Items(“O2”).InnerItems(“I1”).Data)

The code snippet should display a message box containing the content of the data attribute of the element called I1 in the inner collection of the element called O2 in the outer collection - which should be 2.1.

The full code for a similar example can be found in appendices A-F.

Appendix G demonstrates how to reference the custom section utilising the handler classes that we have just created.

Appendix A: App.Config

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

 <!-- This is the pointer to my custom section, the "type" parameter defines:

 the class within my assembly that is used to interpret this section and the

 assembly name that is used. If you ommit one of these, then the system

 defaults to the system assembly. The format for the type parameter

 is:

 type="assembly.class, assembly, version=<version number>, culture=<culture>, PublicKeyToken=<GUID>"

 example:

 type="MyApp.MyCustomSection, MyApp, Version=1.0.0.0, culture=neutral, PublicKeyTokey=null"

 the version, culture and public key token fields of the type parameter are

 optional - but if the pointer to the class name and and assembly name are

 omitted, then the application will crash when it can't find your interpreter

 class.

 -->

 <sectionGroup name="userSettings" type="System.Configuration.UserSettingsGroup, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >

 <section name="ConfigurationExample.My.MySettings" type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser" requirePermission="false" />

 </sectionGroup>

 <section name="MyCustomSection" type="ConfigurationExample.SectionReader, ConfigurationExample" />

 </configSections>

 <system.diagnostics>

 <sources>

 <!-- This section defines the logging configuration for My.Application.Log -->

 <source name="DefaultSource" switchName="DefaultSwitch">

 <listeners>

 <add name="FileLog"/>

 <!-- Uncomment the below section to write to the Application Event Log -->

 <!--<add name="EventLog"/>-->

 </listeners>

 </source>

 </sources>

 <switches>

 <add name="DefaultSwitch" value="Information" />

 </switches>

 <sharedListeners>

 <add name="FileLog"

 type="Microsoft.VisualBasic.Logging.FileLogTraceListener, Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL"

 initializeData="FileLogWriter"/>

 <!-- Uncomment the below section and replace APPLICATION_NAME with the name of your application to write to the Application Event Log -->

 <!--<add name="EventLog" type="System.Diagnostics.EventLogTraceListener" initializeData="APPLICATION_NAME"/> -->

 </sharedListeners>

 </system.diagnostics>

 <MyCustomSection description="My Custom Section description">

 <!-- define a collection of elements -->

 <OuterCollection description="All my data">

 <OuterItem name="Item1" description="Test Item 1">

 <!-- define a sub-collection of elements etc... you can nest as few or as

 many collections as required. You don't have to even use any collections

 -->

 <InnerCollection description="Test item 1 data collection">

 <InnerItem name="Item1_Data1" description="Item1_Data1 Description" ItemData="1.1" />

 <InnerItem name="Item1_Data2" description="Item1_Data2 Description" ItemData="1.2" />

 </InnerCollection>

 </OuterItem>

 <OuterItem name="Item2" description="Test Item 2">

 <InnerCollection description="Test item 2 data collection">

 <InnerItem name="Item2_Data1" description="Item2_Data1 Description" ItemData="2.1" />

 <InnerItem name="Item2_Data2" description="Item2_Data2 Description" ItemData="2.2" />

 <InnerItem name="Item2_Data3" description="Item2_Data3 Description" ItemData="2.3" />

 </InnerCollection>

 </OuterItem>

 <OuterItem name="Item3" description="Test Item 3">

 <InnerCollection description="Test item 3 data collection">

 <InnerItem name="Item3_Data1" description="Item3_Data1 Description" ItemData="3.1" />

 </InnerCollection>

 </OuterItem>

 </OuterCollection>

 </MyCustomSection>

</configuration>

Appendix B: SectionReader.vb
Public Class SectionReader

 Inherits ConfigurationSection

 Public Sub New()

 End Sub

 'Grab an attribute right from our configuration section header... in our

 'example, this property should return "My Custom Section description"

 <ConfigurationProperty("description")> _

 Public ReadOnly Property Description() As String

 Get

 Return CType(MyBase.Item("description"), String)

 End Get

 End Property

 'Use this style of property for grabbing a collection... in our

 'example, this property should return a collection of data items.

 'defining the AddItemName property changes the keyword from Add to

 'a custom name.

 ' <add key="MyName" value="MyValue">

 'can become

 ' <OuterItem name="MyName" value="MyValue">

 <ConfigurationProperty("OuterCollection", IsDefaultCollection:=True, IsRequired:=True)> _

 <ConfigurationCollection(GetType(OuterItem), AddItemName:="OuterItem")> _

 Public ReadOnly Property Items() As OuterCollection

 Get

 Return CType(MyBase.Item("OuterCollection"), OuterCollection)

 End Get

 End Property

 'Allows us to minimize keystrokes further down the road. When referencing

 'this class, instead of having to reference an item by

 ' oInst.Item("MyCollectionItem")

 'we can reference it using

 ' oInst("MyCollectionItem")

 '

 'Because we defined the "name" property as the key in our outer collection

 'class, we can now reference items within the collection by name instead of

 'by index if we wish.

 Default Public Shadows ReadOnly Property Item(ByVal Name As String) As OuterItem

 Get

 Return Items(Name)

 End Get

 End Property

 'Does the same as the method above, but by index. Dim Item = oInst(Index)

 Default Public Shadows ReadOnly Property Item(ByVal Index As Integer) As OuterItem

 Get

 Return Items(Index)

 End Get

 End Property

End Class

Appendix C: OuterCollection.vb

Public Class OuterCollection

 Inherits ConfigurationElementCollection

 'Collections may also reference node attributes...

 <ConfigurationProperty("description")> _

 Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("description")

 End Get

 End Property

 Protected Overloads Overrides Function CreateNewElement() As System.Configuration.ConfigurationElement

 Return New OuterItem

 End Function

 Protected Overrides Function GetElementKey(ByVal element As System.Configuration.ConfigurationElement) As Object

 Return CType(element, OuterItem).Name

 End Function

 'Allows us to reference an item in the outer collection in the shortform

 ' oInst(0)

 'instead of

 ' oInst.Items(0)

 Default Public Shadows ReadOnly Property Item(ByVal Index As Integer) As OuterItem

 Get

 Return CType(BaseGet(Index), OuterItem)

 End Get

 End Property

 'Does the same as the method above but referencing items by name instead of index

 Default Public Shadows ReadOnly Property Item(ByVal Name As String) As OuterItem

 Get

 'Defining the name attribute in our OuterItem class as IsKey:=True

 'allows us to reference the item by name here instead of by index.

 Return CType(BaseGet(Name), OuterItem)

 End Get

 End Property

End Class

Appendix D: OuterItem.vb

Public Class OuterItem

 Inherits ConfigurationElement

 'IsKey: Defines that this property is the key and that

 'any call that gets an object by key will reference this field. Consequently

 'this field must have unique data in each of the items at this node level

 'in the application configuration file.

 'IsRequired: Specifies that this field is required in the configuration

 'file, if it is missing, a runtime error will occur.

 <ConfigurationProperty("name", IsKey:=True, IsRequired:=True)> _

 Public ReadOnly Property Name() As String

 Get

 Return MyBase.Item("name")

 End Get

 End Property

 'Grab the description...

 <ConfigurationProperty("description")> _

 Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("description")

 End Get

 End Property

 'Reference to our inner collection

 'setting the AddItemName to "InnerItem" allows us to call our

 'nodes by "InnerItem" rather than "add"

 <ConfigurationProperty("InnerCollection")> _

 <ConfigurationCollection(GetType(InnerItem), AddItemName:="InnerItem")> _

 Public ReadOnly Property InnerItems() As InnerCollection

 Get

 Return CType(MyBase.Item("InnerCollection"), InnerCollection)

 End Get

 End Property

 Default Public Shadows ReadOnly Property Item(ByVal Index As Integer) As InnerItem

 Get

 Return InnerItems(index)

 End Get

 End Property

 Default Public Shadows ReadOnly Property Item(ByVal Name As String) As InnerItem

 Get

 Return InnerItems(name)

 End Get

 End Property

End Class

Appendix E: InnerCollection.vb

Public Class InnerCollection

 Inherits ConfigurationElementCollection

 <ConfigurationProperty("description")> _

 Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("description")

 End Get

 End Property

 Protected Overloads Overrides Function CreateNewElement() As System.Configuration.ConfigurationElement

 Return New InnerItem

 End Function

 Protected Overrides Function GetElementKey(ByVal element As System.Configuration.ConfigurationElement) As Object

 Return CType(element, InnerItem).Name

 End Function

 Default Public Shadows ReadOnly Property Item(ByVal name As String) As InnerItem

 Get

 Return CType(BaseGet(name), InnerItem)

 End Get

 End Property

 Default Public Shadows ReadOnly Property Item(ByVal index As Integer) As InnerItem

 Get

 Return CType(BaseGet(index), InnerItem)

 End Get

 End Property

 Public Function IndexOf(ByVal Item As InnerItem) As Integer

 Return BaseIndexOf(Item)

 End Function

End Class

Appendix F: InnerItem.vb

Public Class InnerItem

 Inherits ConfigurationElement

 <ConfigurationProperty("name", IsKey:=True, IsRequired:=True)> _

 Public ReadOnly Property Name() As String

 Get

 Return MyBase.Item("name")

 End Get

 End Property

 <ConfigurationProperty("description")> _

 Public ReadOnly Property Description() As String

 Get

 Return MyBase.Item("description")

 End Get

 End Property

 <ConfigurationProperty("ItemData")> _

 Public ReadOnly Property ItemData() As String

 Get

 Return MyBase.Item("ItemData")

 End Get

 End Property

End Class

Appendix G: Module1.vb
Module Module1

 Sub Main()

 'Point our section reader at our custom section in the app.config

 Dim oSR As SectionReader = ConfigurationManager.GetSection("MyCustomSection")

 'Get the description for our custom section item

 Dim Title As String = "Section Reader [" & oSR.Description & "]"

 Console.WriteLine(Title)

 Console.WriteLine("".PadRight(Title.Length, "-"))

 Console.WriteLine()

 'Grab the description for our outer collection

 Console.WriteLine(oSR.Items.Description)

 Console.WriteLine()

 For Each oOuter As OuterItem In oSR.Items

 'Spit out the name and description for the current item in the outer collection

 Dim OuterTitle As String = oOuter.Name & " [" & oOuter.Description & "]"

 Console.WriteLine(vbTab & OuterTitle)

 Console.WriteLine(vbTab & "".PadRight(OuterTitle.Length, "-"))

 'Get the description for the inner collection of this outer item

 Console.WriteLine(vbTab & vbTab & oOuter.InnerItems.Description)

 Console.WriteLine(vbTab & vbTab & "".PadRight(oOuter.InnerItems.Description.Length, "-"))

 For Each oInner As InnerItem In oOuter.InnerItems

 'Spit out the name, description and data for the current item in the inner collection

 Console.WriteLine(vbTab & vbTab & oInner.Name & " [" & oInner.Description & "]: " & oInner.ItemData)

 Next

 Console.WriteLine()

 Next

 Console.ReadLine()

 End Sub

End Module
	
	Page 1 of 22
	

	
	Page 6 of 22
	

